分析 (Ⅰ)利用y=$\frac{1}{3}$x3的对称中心,通过平移变换,函数f(x)的图象关于点(0,1)对称,直接写出a的值;
(Ⅱ)求出函数的导数,利用a与0大小比较,分类讨论通过等号的符号,求函数f(x)的单调递减区间;
(Ⅲ)利用f(x)≥1在区间[3,+∞)上恒成立,转化为a的不等式,然后求解最值,即可求a的最大值.
解答 解:(Ⅰ)函数y=x3的对称中心(0,0),平移变换后函数f(x)=$\frac{1}{3}$x3+1的对称中心(0,1),
∴a的值是0.…(2分)
(Ⅱ)f'(x)=x2-2ax.…(4分)
当a=0时,f'(x)≥0,f(x)在(-∞,+∞)内单调递增;
当a>0时,由f'(x)<0得:0<x<2a;
当a<0时,由f'(x)<0得:2a<x<0.…(7分)
综上所述,当a=0时,无递减区间;当a>0时,f(x)的单调递减区间是(0,2a);
当a<0时,f(x)的单调递减区间是(2a,0).
(Ⅲ)因为 f(x)≥1在区间[3,+∞)上恒成立,即$\frac{1}{3}$x3-ax2≥0在区间[3,+∞)上恒成立.
所以a≤$\frac{1}{3}x$在区间[3,+∞)上恒成立.…(10分)
因为 x≥3,
所以$\frac{1}{3}x≥1$.…(11分)
所以 a≤1.…(13分)
所以 若f(x)≥1在区间[3,+∞)上恒成立,a的最大值为1.…(14分)
点评 本题考查函数的对称性,导函数求解函数的单调区间,函数的恒成立问题的应用,考查分类讨论转化思想的应用,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | n(n+1) | B. | n(n-1) | C. | $\frac{n(n+1)}{2}$ | D. | $\frac{n(n-1)}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
喜欢户外运动情况 性别 | 喜欢户外运动 | 不喜欢户外运动 | 合计 |
| 男性 | 20 | ||
| 女性 | 15 | ||
| 合计 | 50 |
| P(x2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{1}{2}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({\frac{1}{3},\frac{3}{4}})$ | B. | $({\frac{2}{3},\frac{3}{4}})$ | C. | (3,4) | D. | (4,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com