精英家教网 > 高中数学 > 题目详情

某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为立方米,且.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为千元,设该容器的建造费用为千元.

(1)写出关于的函数表达式,并求该函数的定义域;
(2)求该容器的建造费用最小时的

(I)
(II)当时,建造费用最小时;当时,建造费用最小时

解析试题分析:(I)设容器的容积为,由题意知,又
,由于,因此
所以建造费用

(II)由(I)得
由于,所以,令,得
(1)当时,
所以是函数的极小值点,也是最小值点.
(2)当时,函数单调递减,
所以是函数的最小值点,
综上所述,当时,建造费用最小时;当时,建造费用最小时
考点:本题主要考查函数模型,利用导数确定函数的单调性及极值。
点评:典型题,这是山东考题,意在考查函数的应用以及导数的应用。从解题方法看,确定好函数解析式,主要运用几何体体积公式,而求最值,主要运用导数知识,由于要进行分类讨论,所以,不少考生在此失分。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)解不等式:
(Ⅱ)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算:
(1) 
(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知x1、x2是关于x的一元二次方程x2+(3a-1)x+2a2-1=0的两个实数根,使得
(3x1-x2)(x1-3x2)=-80成立.求实数a的所有可能值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商店将进货价10元的商品按每个18元出售时,每天可卖出60个.商店经理到市场做了一番调研后发现,如将这种商品的售价(在每个18元的基础上)每提高1元,则日销售量就减少5个;如将这种商品的售价(在每个18元的基础上)每降低1元,则日销售量就增加10个.为获得每日最大的利润,此商品售价应定为每个多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知二次函数有两个零点,且最小值是,函数的图象关于原点对称;
(1)求的解析式;
(2)若在区间上是增函数,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

现在人们经常使用电脑,若坐姿不正确,易造成眼睛疲劳,腰酸颈痛.一般正确的坐姿是:眼睛望向显示器屏幕时,应成20°的俯角α(即望向屏幕上边缘的水平视线与望向屏幕中心的视线的夹角);而小臂平放,肘部形成100°的钝角β.张燕家刚买的电脑显示器屏幕的高度为24.5cm,屏幕的上边缘到显示器支座底部的距离为36cm.已知张燕同学眼部到肩部的垂直距离为20cm,大臂长(肩部到肘部的距离)DE=28cm,张燕同学坐姿正确时肩部到臀部的距离是DM=53cm,请你帮张燕同学计算一下:
(1)她要按正确坐姿坐在电脑前,眼与显示器屏幕的距离应是多少?(精确到0.1cm)
(2)她要订做一套适合自己的电脑桌椅,桌、椅及键盘三者之间的高度应如何搭配?(精确到0.1cm)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某售报亭每天以每份0.4元的价格从报社购进若干份报纸,然后以每份1元的价格出售,如果当天卖不完,剩下的报纸以每份0.1元的价格卖给废品收购站.
(Ⅰ)若售报亭一天购进270份报纸,求当天的利润(单位:元)关于当天需求量(单位:份,)的函数解析式.
(Ⅱ)售报亭记录了100天报纸的日需求量(单位:份),整理得下表:

日需求量
240
250
260
270
280
290
300
 频数
10
20
16
16
15
13
10
以100天记录的需求量的频率作为各销售量发生的概率.
(1)若售报亭一天购进270份报纸,表示当天的利润(单位:元),求的数学期望;
(2)若售报亭计划每天应购进270份或280份报纸,你认为购进270份报纸好,还是购进280份报纸好? 说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)一艘轮船在航行中每小时的燃料费和它的速度的立方成正比,已知在速度为每小时10公里时的燃料费是每小时8元,而其他与速度无关的费用是每小时128元.
(1)求轮船航行一小时的总费用与它的航行速度(公里/小时)的函数关系式;
(2)问此轮船以多大的速度航行时,能使每公里的总费用最少?

查看答案和解析>>

同步练习册答案