精英家教网 > 高中数学 > 题目详情
10.定义在R上的函数f(x)满足:f(x+1)=-f(x),当x∈(0,1]时,f(x)=-x+1,则f(3.5)的值是(  )
A.0.5B.-0.5C.2.5D.-2.5

分析 f(x+1)=-f(x),可得f(x+2)=-f(x+1)=f(x),进而得出.

解答 解:∵f(x+1)=-f(x),∴f(x+2)=-f(x+1)=f(x),
∴f(3.5)=f(-0.5)=-f(0.5)=-(-0.5+1)=-0.5
故选:B.

点评 本题考查了函数的奇偶性、求值,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.近年来我国电子商务行业迎来篷布发展的新机遇,2015年双11期间,某购物平台的销售业绩高达918亿人民币.与此同时,相关管理部门推出了针对电商的商品和服务的评价体系.现从评价系统中选出200次成功交易,并对其评价进行统计,对商品的好评率为0.6,对服务的好评率为0.75,其中对商品和服务都做出好评的交易为80次.
(1)是否可以在犯错误概率不超过0.1%的前提下,认为商品好评与服务好评有关?
(2)若将频率视为概率,某人在该购物平台上进行的5次购物中,设对商品和服务全好评的次数为随机变量X:
①求对商品和服务全好评的次数X的分布列(概率用组合数算式表示);
②求X的数学期望和方差.
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
 k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.求不等式|ab(a2-b2)+bc(b2-c2)+ca(c2-a2)|≤M(a2+b2+c22对所有实数a,b,c都成立的最小的M值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=ex-1,g(x)=-x2+4x-3,若有f(a)=g(b),则b的取值范围是(2-$\sqrt{2}$,2+$\sqrt{2}$),a的取值范围是(-∞,ln2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\sqrt{1-x}$,g(x)=sinx•f(sin2x)+$\frac{\sqrt{6}+\sqrt{2}}{4}$f(cos4x),x∈[-$\frac{π}{4}$,0]
(1)将函数g(x)化简成Asin(ωx+φ)+B(A,B∈R,ω>0,φ∈(-π,π)的形式;
(2)求函数g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,四边形ABCD中,AB∥CD,∠ABD=30°,AB=2CD=2AD=2$\sqrt{3}$,DE⊥面ABCD,EF∥BD,且EF=$\frac{2}{3}$BD.
(1)求证:FB∥面ACE;
(2)若二面角C-BF-D的大小为60°,求CF与面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,平面PAB⊥平面ABCD,PA⊥AB,AD∥BC,AB⊥AD,点E在BC上,BC=2AB=2AD=4BE=4.
(1)求证:平面PED⊥平面PAC;
(2)若直线PE与平面PAC所成的角的正弦值为$\frac{{\sqrt{5}}}{5}$,求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义集合A,B之间的运算“*”:A*B={x|x=x1+x2,x1∈A,x2∈B},若A={1,2,3},B={1,2},则集合A*B中的最大元素为5,集合A*B的所有子集的个数为16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx-mx2,g(x)=$\frac{1}{2}$mx2+x,m∈R,令F(x)=f(x)+g(x).
(Ⅰ)当$m=\frac{1}{2}$时,求函数f(x)的单调区间及极值;
(Ⅱ)若关于x的不等式F(x)≤mx-1恒成立,求整数m的最小值.

查看答案和解析>>

同步练习册答案