精英家教网 > 高中数学 > 题目详情
1.求不等式|ab(a2-b2)+bc(b2-c2)+ca(c2-a2)|≤M(a2+b2+c22对所有实数a,b,c都成立的最小的M值.

分析 由题意,根据不等式中a,b,c的对等性可得,当且仅当a=b=c时,取得等号,即可得出结论

解答 解:由题意,根据不等式中a,b,c的对等性可得
当且仅当a=b=c时,取得等号,
∴M≥0,
∴最小的实数M是0.

点评 本题考查不等式,考查学生分析解决问题的能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.为了解某校高三毕业生报考体育专业学生的体重(单位:千克),将他们的体重数据整理后得到如下频率分布直方图,已知图中从左到右前3个小组的频率之比为1:2:3,其中第二小组的频数为8.
(1)求该校报考体育专业学生的总人数n;
(2)已知A,a是该校报考体育专业的两名学生,A的体重小于55千克,a的体重不小于70千克,现从该校报考体育专业的学生中抽取体重小于55千克的学生2 人,体重不小于70千克的学生1人组成3人训练组,求A在训练组且a不在训练组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=-x+alnx(a∈R).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)设g(x)=x2-2x+2a,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=|x-1|+$\frac{|x-2|}{2}$+$\frac{|x-3|}{3}$(x∈R),则f(x)的最小值是$\frac{7}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.直线x-y-3=0被圆$\left\{\begin{array}{l}x=3cosθ\\ y=3sinθ\end{array}\right.$(θ为参数)截得的弦长是(  )
A.3$\sqrt{2}$B.4C.3D.4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如果关于x的不等式|x+1|+|x-2|>a恒成立,只须a满足a<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知a∈R,集合A={x|ax2-2x+2a-1=0},B={x|x+|4x-a|>1},p:A=∅,q:B=R.
(1)若p∧q为真,求a的取值范围;
(2)若p∧q为假,p∨q为真,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.定义在R上的函数f(x)满足:f(x+1)=-f(x),当x∈(0,1]时,f(x)=-x+1,则f(3.5)的值是(  )
A.0.5B.-0.5C.2.5D.-2.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知Rt△ABC,斜边BC?α,点A∈α,AO⊥α,O为垂足,∠ABO=30°,∠ACO=45°,求二面角A-BC-O的大小.

查看答案和解析>>

同步练习册答案