精英家教网 > 高中数学 > 题目详情
12.已知Rt△ABC,斜边BC?α,点A∈α,AO⊥α,O为垂足,∠ABO=30°,∠ACO=45°,求二面角A-BC-O的大小.

分析 在α内过O作OD⊥BC,连结AD,推导出BC⊥AD,从而∠ADO为二面角A-BC-O的平面角,解Rt△ADO,能求出结果.

解答 解:如图,在平面α内,过O作OD⊥BC,垂足为D,连结AD,
设OC=a,∵AO⊥α,BC?α,
∴AO⊥BC,又∵AO∩OD=O,∴BC⊥平面AOD,
∵AD?平面AOD,∴AD⊥BC,
∴∠ADO是二面角A-BC-O的平面角,
∵AO⊥α,OB?α,OC?α,∴AO⊥OB,AO⊥OC,
又∠ABO=30°,∠ACO=45°,∴AO=a,AC=$\sqrt{2}a$,AB=2a,
在Rt△ABC中,∠BAC=90°,
∴BC=$\sqrt{A{C}^{2}+A{B}^{2}}=\sqrt{6}a$,∴AD=$\frac{AB•AC}{BC}$=$\frac{2a•\sqrt{2}a}{\sqrt{6}a}$=$\frac{2\sqrt{3}}{3}a$,
在Rt△AOD中,sin∠ADO=$\frac{AO}{AD}=\frac{a}{\frac{2\sqrt{3}}{3}a}$=$\frac{\sqrt{3}}{2}$,
∴∠ADO=60°.
∴二面角A-BC-O的大小是60°.

点评 本题考查二面角的求法,是中档题,解题基本步骤为“一作二证三求”,解题时要注意顶点位置的合理选择.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.求不等式|ab(a2-b2)+bc(b2-c2)+ca(c2-a2)|≤M(a2+b2+c22对所有实数a,b,c都成立的最小的M值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在四棱锥P-ABCD中,平面PAB⊥平面ABCD,PA⊥AB,AD∥BC,AB⊥AD,点E在BC上,BC=2AB=2AD=4BE=4.
(1)求证:平面PED⊥平面PAC;
(2)若直线PE与平面PAC所成的角的正弦值为$\frac{{\sqrt{5}}}{5}$,求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义集合A,B之间的运算“*”:A*B={x|x=x1+x2,x1∈A,x2∈B},若A={1,2,3},B={1,2},则集合A*B中的最大元素为5,集合A*B的所有子集的个数为16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知二面角α-l-β的平面角为θ,A,B∈l,AC?α,BD?β,AC⊥l,BD⊥l,若AB=AC=BD=1,CD=2,则θ=120°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,已知斜三棱柱ABC-A1B1C1的所有棱长均为2,侧棱BB1与底面ABC所成的角为$\frac{π}{3}$,且侧面ABB1A1⊥底面ABC.
(1)求证:B1C⊥AC1
(2)若M为A1C1的中点.求二面角B1-AC-M的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在正三棱柱ABC-A1B1C1中,点D是棱AB的中点,BC=1,AA1=$\sqrt{3}$.
(1)求证:BC1∥平面A1DC;             
(2)求二面角D-A1C-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=lnx-mx2,g(x)=$\frac{1}{2}$mx2+x,m∈R,令F(x)=f(x)+g(x).
(Ⅰ)当$m=\frac{1}{2}$时,求函数f(x)的单调区间及极值;
(Ⅱ)若关于x的不等式F(x)≤mx-1恒成立,求整数m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.2015年10月29日夜里,全面放开二胎的消息一公布,迅速成为人们热议的热点,为此,某网站进行了一次民意调查,参与调查的网民中,年龄分布情况如图所示:
(1)若以频率代替概率,从参与调查的网民中随机选取1人进行访问,求其年龄恰好在[30,40)之间的概率;
(2)若从参与调查的网民中按照分层抽样的方法选取100人,其中30岁以下计划要二胎的有25人,年龄不低于30岁的计划要二胎的有30人,请以30岁为分界线,以是否计划要二胎的人数建立分类变量.
①填写下列2×2列联表:
计划要二胎不计划要二胎合计
30岁以下
不低于30岁
合计
②试分析是否有90%以上的把握认为计划要二胎与年龄有关?
P(K2≥k00.150.100.05
k02.0722.7063.841
K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

同步练习册答案