ÒÑÖªº¯Êýf£¨x£©=
-
1
2
x+
1
4
£¬x¡Ê[0£¬
1
2
]
2x2
x+2
£¬x¡Ê(
1
2
£¬1]
g£¨x£©=asin£¨
¦Ð
3
x+
3¦Ð
2
£©-2a+2£¨a£¾0£©£¬¸ø³öÏÂÁнáÂÛ£º
½áÂÛ£º
¢Ùº¯Êýf£¨x£©µÄÖµÓòΪ[0£¬
2
3
]£»
¢Úº¯Êýg£¨x£©ÔÚ[0£¬1]ÉÏÊÇÔöº¯Êý£»
¢Û¶ÔÈÎÒâa£¾0£¬·½³Ìf£¨x£©=g£¨x£©ÔÚ[0£¬1]ÄÚºãÓн⣻
¢ÜÈô´æÔÚx1£¬x2¡Ê[0£¬1]£¬Ê¹µÃf£¨x1£©=g£¨x2£©³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ[
4
9
£¬
4
5
]£®
ÆäÖÐËùÓÐÕýÈ·½áÂÛµÄÐòºÅÊÇ
 
£®
¿¼µã£º·Ö¶Îº¯ÊýµÄÓ¦ÓÃ
רÌ⣺ÔĶÁÐÍ,º¯ÊýµÄÐÔÖʼ°Ó¦ÓÃ
·ÖÎö£ºÇóµÃf£¨x£©µÄ¸÷¶ÎµÄÖµÓò£¬ÔÙÇó²¢¼¯£¬¼´¿ÉÅжϢ٣»»¯¼òg£¨x£©£¬ÅжÏg£¨x£©µÄµ¥µ÷ÐÔ¼´¿ÉÅжϢڣ»
Çó³ög£¨x£©ÔÚ[0£¬1]µÄÖµÓò£¬Çó³ö·½³Ìf£¨x£©=g£¨x£©ÔÚ[0£¬1]ÄÚÎÞ½âµÄaµÄ·¶Î§£¬¼´¿ÉÅжϢۣ»
Óɢ۵ã¬ÓнâµÄÌõ¼þΪ£ºg£¨x£©µÄ×îСֵ²»´óÓÚf£¨x£©µÄ×î´óÖµÇÒg£¨x£©µÄ×î´óÖµ²»Ð¡ÓÚf£¨x£©µÄ×îСֵ£¬½â³öaµÄ·¶Î§£¬¼´¿ÉÅжϢܣ®
½â´ð£º ½â£ºµ±x¡Ê[0£¬
1
2
]ʱ£¬f£¨x£©=
1
4
-
1
2
xÊǵݼõº¯Êý£¬Ôòf£¨x£©¡Ê[0£¬
1
4
]£¬
µ±x¡Ê£¨
1
2
£¬1]ʱ£¬f£¨x£©=
2x2
x+2
=2£¨x+2£©+
8
x+2
-8£¬f¡ä£¨x£©=2-
8
(x+2)2
£¾0£¬Ôòf£¨x£©ÔÚ£¨
1
2
£¬1]ÉϵÝÔö£¬
Ôòf£¨x£©¡Ê£¨
1
5
£¬
2
3
]£®
Ôòx¡Ê[0£¬1]ʱ£¬f£¨x£©¡Ê[0£¬
2
3
]£¬¹Ê¢ÙÕýÈ·£»
µ±x¡Ê[0£¬1]ʱ£¬g£¨x£©=asin£¨
¦Ð
3
x+
3¦Ð
2
£©-2a+2£¨a£¾0£©=-acos
¦Ð
3
x-2a+2£¬
ÓÉa£¾0£¬0¡Ü
¦Ð
3
x¡Ü
¦Ð
3
£¬Ôòg£¨x£©ÔÚ[0£¬1]ÉÏÊǵÝÔöº¯Êý£¬¹Ê¢ÚÕýÈ·£»
ÓÉ¢ÚÖª£¬a£¾0£¬x¡Ê[0£¬1]ʱg£¨x£©¡Ê[2-3a£¬2-
5a
2
]£¬
Èô2-3a£¾
2
3
»ò2-
5a
2
£¼0£¬¼´0£¼a£¼
4
9
»òa£¾
4
5
£¬·½³Ìf£¨x£©=g£¨x£©ÔÚ[0£¬1]ÄÚÎ޽⣬¹Ê¢Û´í£»
¹Ê´æÔÚx1£¬x2¡Ê[0£¬1]£¬Ê¹µÃf£¨x1£©=g£¨x2£©³ÉÁ¢£¬Ôò
2-3a¡Ü
2
3
2-
5a
2
¡Ý0
½âµÃ
4
9
¡Üa¡Ü
4
5
£®
¹Ê¢ÜÕýÈ·£®
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Ü£®
µãÆÀ£º±¾Ì⿼²é·Ö¶Îº¯ÊýµÄÔËÓ㬿¼²éº¯ÊýµÄÖµÓòºÍµ¥µ÷ÐÔ¼°ÔËÓ㬿¼²é´æÔÚÐÔÃüÌâ³ÉÁ¢µÄÌõ¼þ£¬×ª»¯Îª×îÖµÖ®¼äµÄ¹ØÏµ£¬ÊôÓÚÒ×´íÌâºÍÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©=
2x2+x-2+sinx
x2-1
µÄ×î´óֵΪM£¬×îСֵΪm£¬ÔòM+m=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚ¡÷ABCÖУ¬A=60¡ã£¬b=1£¬S¡÷ABC=
3
£¬Ôò
a+b+c
sinA+sinB+sinC
=£¨¡¡¡¡£©
A¡¢
8
3
3
B¡¢
2
39
3
C¡¢
26
3
3
D¡¢2
3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ²îÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý£¬ÇÒSn=
1
a1a2
+
1
a2a3
+¡­+
1
anan+1
£¬S2=
2
3
£¬S3=
3
4
£®Éè[x]±íʾ²»´óÓÚxµÄ×î´óÕûÊý£¨Èç[2.10]=2£¬[0.9]=0£©£®
£¨1£©ÊÔÇóÊýÁÐ{an}µÄͨÏ
£¨2£©ÇóT=[log21]+[log22]+[log23]+¡­+[log2£¨2 an-1£©]+[log2£¨2 an£©]¹ØÓÚnµÄ±í´ïʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªA¡¢B¡¢C¡¢DËĵ㲻¹²Ã棬ÔòÓëÕâËĵã¾àÀëÏàµÈµÄÆ½Ãæ¹²ÓÐ
 
¸ö£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éè
1
2
£¼£¨
1
2
£©b£¼£¨
1
2
£©a£¼1£¬±È½ÏaaÓëabÓëbaµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÇòO£¬ÇòÃæÉÏÓÐËĵãP¡¢A¡¢B¡¢C£¬ÇÒPC¡¢PA¡¢PBÁ½Á½´¹Ö±£¬PC=5£¬PA=3£¬PB=4£¬Èô¹ýCµãµÄÖ±¾¶ÎªCD£¬Çó¶þÃæ½ÇP-CD-AµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¶Ôa£¬b¡ÊR£¬¶¨Ò壺max£¨a£¬b£©=
 a    (a¡Ýb)    
 b (a£¼b)
£¬Ôòº¯Êýf£¨x£©=max£¨6x-6£¬-x+8£©£¨x¡ÊR£©µÄ×îСֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

º¯Êýf£¨x£©=2x+sinxµÄ²¿·ÖͼÏó¿ÉÄÜÊÇ£¨¡¡¡¡£©
A¡¢
B¡¢
C¡¢
D¡¢

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸