精英家教网 > 高中数学 > 题目详情
过圆C:x2+y2=2R2内一定点M(x0,y0)作一动直线交圆C于两点A、B,过坐标原点O作直线ON⊥AM于点N,过点A的切线交直线ON于点Q,则
OM
OQ
=
 
(用R表示)
考点:直线与圆的位置关系,平面向量数量积的运算
专题:函数的性质及应用
分析:根据已知中圆C:x2+y2=R2内一定点M(x0,y0)作一动直线交圆C于两点P、R,过坐标原点O作直线ON⊥PM于点N,过点P的切线交直线ON于点Q,根据垂径定理,切线的性质及三角形相似的判定定理,我们易得△PN0∽△QP0,ON•OQ=OP2=R2,进而根据向量数量积的几何意义,易求出答案.
解答: 解:∵过坐标原点O作直线ON⊥PM于点N,过点A的切线交直线ON于点Q,
则△AN0∽△QA0,∴ON•OQ=OA2=2R2
OM
OQ
=|
OM
|•|OQ|•cos<
OM
OQ
>=|
ON
|•|
OQ
|=2R2
故答案为:2R2
点评:本题考查的知识点是直线与圆相交的性质,切线的性质,其中根据已知条件用平面几何的知识得到ON•OQ=OP2=R2是解答本题的关键,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)为R上的奇函数,当x>0时.f(x)=x2-x.
(1)求f(x)的解析式;

(2)若f(x)=a恰有3个不同的解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

命题“x2-9=0的解是x=±3”,在这个命题中,使用的逻辑联结词的情况是(  )
A、没有使用逻辑联结词
B、使用了“且”
C、使用了“或”
D、使用了“非”

查看答案和解析>>

科目:高中数学 来源: 题型:

用数学归纳法证明等式(n+1)(n+2)×…×(n+n)=2n×1×3×…×(2n-1)的过程中,由n=k(k∈N*)推出n=k+1(k∈N*)成立时,左边应增加的因式是(  )
A、2k+1
B、2(2k+1)
C、
2k+1
k+1
D、
2k+2
k+1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为R,下列命题中正确的是
 
(填命题序号).
①若f(3)>f(2),则f(x)在定义域R上是单调增函数;
②若f(3)>f(2),则f(x)在定义域R上不是单调减函数;
③若 f(x)在定义域R上是单调增函数,则必有f(3)>f(2);
④若f(3)<f(2),则f(x)在定义域R上不是单调增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

设曲线f(x)=
1
3
x3-2x-
1
3
在点(1,-2)处的切线与直线ax+y+1=0垂直,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在[0,1]上的函数y=f(x)同时满足:①f(x)≥0;②f(1)=1;③若x1≥0,x2≥0,且x1+x2≤1,则f(x1+x2)≥f(x1)+f(x2)为“梦函数”
(1)试判断f(x)=2x-1是否为“梦函数”;
(2)若函数y=f(x)为“梦函数”,求函数y=f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
夹角为60°,|
a
|=2
|
b
|=3
,则(2
a
-
b
)•
a
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+bx+c,且f(1)=0.
(1)若函数f(x)是偶函数,求f(x)的解析式;
(2)要使函数f(x)在区间[-1,3]上单调递增,求b的取值范围.

查看答案和解析>>

同步练习册答案