精英家教网 > 高中数学 > 题目详情
12.如图,ABCD-A1B1C1D1是四棱柱,侧棱AA1⊥底面ABCD,底面ABCD是梯形,AB=BC=CD=1,AD=AA1=2.
(Ⅰ)求证:平面BDD1B1⊥平面ABB1A1
(Ⅱ)E是底面A1B1C1D1所在平面上一个动点,DE与平面C1BD夹角的正弦值为$\frac{4}{{\sqrt{17}}}$,试判断动点E在什么样的曲线上.

分析 (I)取AD的中点F,连接BF,根据各线段长度可得四边形BCDF是菱形,△ABF是正三角形,利用菱形性质及三角形性质即可得出∠ABD=90°,即AB⊥BD,从而BD⊥平面ABB1A1,于是平面BDD1B1⊥平面ABB1A1
(II)以B为原点,建立空间直角坐标系,设E(x,y,2),求出$\overrightarrow{DE}$和平面C1BD的法向量为$\overrightarrow{n}$,令|cos<$\overrightarrow{n},\overrightarrow{DE}$>|=$\frac{4}{\sqrt{17}}$得出E点的轨迹方程.

解答 证明:(Ⅰ)取AD的中点F,连接BF,则AB=BC=CD=AF=DF=1,
∴四边形BCDF是菱形,△ABF是正三角形,
∴∠ABF=∠AFB=60°,∠FBD=∠FDB,
∵∠FBD+∠FDB=∠AFB=60°,
∴∠FBD=∠FDB=30°,
∴∠ABD=∠ABF+∠FBD=90°,∴AB⊥BD.
∵AA1⊥平面ABCD,BD?平面ABCD,
∴AA1⊥BD,又AA1?平面ABB1A1,AB?平面ABB1A1,AA1∩AB=A,
∴BD⊥平面ABB1A1,∵BD?平面BDD1B1
∴平面BDD1B1⊥平面ABB1A1
(Ⅱ)以B为原点,BD,BA,BB1为x轴、y轴、z轴正方向建立空间直角坐标系,
则B(0,0,0),D($\sqrt{3}$,0,0),C1($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$,2),设E(x,y,2),
∴$\overrightarrow{BD}$=($\sqrt{3}$,0,0),$\overrightarrow{B{C}_{1}}$=($\frac{\sqrt{3}}{2}$,-$\frac{1}{2}$,2),$\overrightarrow{DE}$=(x-$\sqrt{3}$,y,z).
设平面C1BD的一个法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{BD}=0}\\{\overrightarrow{n}•\overrightarrow{B{C}_{1}}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{\sqrt{3}x=0}\\{\frac{\sqrt{3}}{2}x-\frac{1}{2}y+2z=0}\end{array}\right.$,取z=1得$\overrightarrow{n}$=(0,4,1),
∴$\overrightarrow{n}•\overrightarrow{DE}$=4y+2.∴cos<$\overrightarrow{n},\overrightarrow{DE}$>=$\frac{\overrightarrow{n}•\overrightarrow{DE}}{|\overrightarrow{n}||\overrightarrow{DE}|}$=$\frac{4y+2}{\sqrt{17}•\sqrt{(x-\sqrt{3})^{2}+{y}^{2}+4}}$.
∵DE与平面C1BD夹角的正弦值为$\frac{4}{{\sqrt{17}}}$,
∴|cos<$\overrightarrow{n},\overrightarrow{DE}$>|=$\frac{4}{\sqrt{17}}$,即|$\frac{4y+2}{\sqrt{17}•\sqrt{(x-\sqrt{3})^{2}+{y}^{2}+4}}$|=$\frac{4}{\sqrt{17}}$.
化简整理得,$y={(x-\sqrt{3})^2}+\frac{15}{4}$,
∴动点E的轨迹是一条抛物线.

点评 本题考查了面面垂直的额判定,线面角的计算,空间向量的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.若三角形三个顶点为A(5,0)、B(-1,0)、C(-3,3),其外接圆为⊙M,求⊙M的方程,若点P(m,3)在⊙M上,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数 f (x)=sinx-xcosx.现有下列结论:
①?x∈[0,π],f(x)≥0;
②若0<x1<x2<π,则$\frac{{x}_{1}}{{x}_{2}}$<$\frac{{sin{x_1}}}{{sin{x_2}}}$;
③若a<$\frac{sinx}{x}$<b对?x∈[0,$\frac{π}{2}$]恒成立,则 a的最大值为$\frac{2}{π}$,b 的最小值为1.
其中正确结论的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知几何体P-ABCD如图,面ABCD为矩形,面ABCD⊥面PAB,且面PAB为正三角形,若AB=2,AD=1,E、F分别为AC、BP中点,
(Ⅰ)求证:EF∥面PCD;
(Ⅱ)求直线BP与面PAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在平面直角坐标系xOy中,过点P(-2,0)的直线与圆x2+y2=1相切于点T,与圆(x-a)2+(y-$\sqrt{3}}$)2=3相交于点R,S,且PT=RS,则正数a的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.抛物线y2=2nx(n<0)与双曲线$\frac{x^2}{4}$-$\frac{y^2}{m^2}$=1有一个相同的焦点,则动点(m,n)的轨迹是(  )
A.椭圆的一部分B.双曲线的一部分C.抛物线的一部分D.直线的一部分

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知数列{an}是正项等比数列,则下列数列不是等比数列的是(  )
A.$\{\sqrt{a_n}\}$B.$\{\frac{1}{a_n}\}$C.{an2}D.{an+1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知p:x≤1,q:$\frac{1}{x}$<1,则¬p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=sin2x+cosx在区间[$\frac{π}{4}$,$\frac{3π}{4}$]上的最小值是(  )
A.$\frac{\sqrt{2}-1}{2}$B.-$\frac{\sqrt{2}+1}{2}$C.-1D.$\frac{1-\sqrt{2}}{2}$

查看答案和解析>>

同步练习册答案