精英家教网 > 高中数学 > 题目详情
7.在平面直角坐标系xOy中,过点P(-2,0)的直线与圆x2+y2=1相切于点T,与圆(x-a)2+(y-$\sqrt{3}}$)2=3相交于点R,S,且PT=RS,则正数a的值为4.

分析 设过点P(-2,0)的直线方程为y=k(x+2),由直线与圆相切的性质得k=$±\frac{\sqrt{3}}{3}$,不妨取k=$\frac{\sqrt{3}}{3}$,由勾股定理得PT=RS=$\sqrt{3}$,再由圆心(a,$\sqrt{3}$)到直线y=$\frac{\sqrt{3}}{3}$(x+2)的距离能求出结果.

解答 解:设过点P(-2,0)的直线方程为y=k(x+2),
∵过点P(-2,0)的直线与圆x2+y2=1相切于点T,
∴$\frac{|2k|}{\sqrt{{k}^{2}+1}}$=1,解得k=$±\frac{\sqrt{3}}{3}$,不妨取k=$\frac{\sqrt{3}}{3}$,
PT=$\sqrt{4-1}$=$\sqrt{3}$,∴PT=RS=$\sqrt{3}$,
∵直线y=$\frac{\sqrt{3}}{3}$(x+2)与圆${({x-a})^2}+{({y-\sqrt{3}})^2}=3$相交于点R,S,且PT=RS,
∴圆心(a,$\sqrt{3}$)到直线y=$\frac{\sqrt{3}}{3}$(x+2)的距离d=$\frac{|\frac{\sqrt{3}}{3}a-\sqrt{3}+\frac{2\sqrt{3}}{3}|}{\sqrt{\frac{1}{3}+1}}$=$\sqrt{(\sqrt{3})^{2}-(\frac{\sqrt{3}}{2})^{2}}$,
由a>0,解得a=4.
故答案为:4.

点评 本题考查实数值的求法,是中档题,解题时要认真审题,注意圆的性质、点到直线的距离公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.如图所示的几何体中,底面ABCD是矩形,AB=9,BC=6,EF∥平面ABCD,EF=3,△ADE和△BCF都是正三角形,求几何体EFABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知角θ的顶点在坐标原点,始边与x轴正半轴重合,终边落在射线y=$\frac{1}{2}x$(x≤0)上.
(Ⅰ)求cos($\frac{π}{2}$+θ)的值;
(Ⅱ)若cos(α+$\frac{π}{4}$)=sinθ,求sin(2α+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,在长方形ABCD中,AB=2,AD=1,E为DC的中点,现将△DAE沿AE折起,使平面DAE⊥平面ABCE,连接DB,DC,BE.

(Ⅰ)求证:BE⊥平面ADE;
(Ⅱ)求点A到平面BDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过点N(0,-1)作直线l与抛物线y2=x相交于A,B两点,M为弦AB的中点,P(4,1)为定点,且M与P不重合,求直线PM在y轴上的截距b的取值范围(  )
A.(0,1)B.(0,+∞)C.(0,$\frac{1}{3}$)∪($\frac{1}{3}$,1)∪(1,+∞)D.($\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,ABCD-A1B1C1D1是四棱柱,侧棱AA1⊥底面ABCD,底面ABCD是梯形,AB=BC=CD=1,AD=AA1=2.
(Ⅰ)求证:平面BDD1B1⊥平面ABB1A1
(Ⅱ)E是底面A1B1C1D1所在平面上一个动点,DE与平面C1BD夹角的正弦值为$\frac{4}{{\sqrt{17}}}$,试判断动点E在什么样的曲线上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列赋值语句错误的是(  )
A.i=i-1B.x*y=aC.k=$\frac{-1}{k}$D.m=m2+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若i(x+yi)=3+4i,x,y∈R,则复数x+yi的模是5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在三棱柱ABC-A1B1C1中,侧面ABB1A1为矩形,AB=2,AA1=2$\sqrt{2}$,D是AA1的中点,BD与AB1交于点O,且CO⊥平面ABB1A1
(1)证明:CD⊥AB1
(2)若OC=OA,求直线CD与平面ABC所成角的正弦值.

查看答案和解析>>

同步练习册答案