精英家教网 > 高中数学 > 题目详情
19.已知角θ的顶点在坐标原点,始边与x轴正半轴重合,终边落在射线y=$\frac{1}{2}x$(x≤0)上.
(Ⅰ)求cos($\frac{π}{2}$+θ)的值;
(Ⅱ)若cos(α+$\frac{π}{4}$)=sinθ,求sin(2α+$\frac{π}{4}$)的值.

分析 (Ⅰ)利用三角函数的定义取点(-2,-1),进行求解即可求cos($\frac{π}{2}$+θ)的值;
(Ⅱ)若cos(α+$\frac{π}{4}$)=sinθ,求出sin2α=$\frac{3}{5}$,cos2α=±$\frac{4}{5}$,再求sin(2α+$\frac{π}{4}$)的值.

解答 解:(Ⅰ)∵角θ的终边在射线y=$\frac{1}{2}x$(x≤0)上,
∴取点P(-2,-1),
则r=|OP|=$\sqrt{(-2)^{2}+(-1)^{2}}$=$\sqrt{5}$,
则sinθ=$\frac{y}{r}$=-$\frac{\sqrt{5}}{5}$,
∴cos($\frac{π}{2}$+θ)=-sinθ=$\frac{\sqrt{5}}{5}$;
(Ⅱ)cos(α+$\frac{π}{4}$)=sinθ=-$\frac{\sqrt{5}}{5}$,展开可得cosα-sinα=-$\frac{\sqrt{10}}{5}$
两边平方可得1-sin2α=$\frac{2}{5}$,∴sin2α=$\frac{3}{5}$,∴cos2α=±$\frac{4}{5}$,
∴sin(2α+$\frac{π}{4}$)=sin2αcos$\frac{π}{4}$+cos2αsin$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$•($\frac{3}{5}$±$\frac{4}{5}$)=$\frac{7\sqrt{2}}{10}$或-$\frac{\sqrt{2}}{10}$.

点评 本题主要考查三角函数求值,考查和角的余弦、正弦公式,利用三角函数的定义是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,设计一个正四棱锥形冷水塔,高是3米,底面的边长是8米:
(1)求这个正四棱锥形冷水塔的容积(冷水塔的厚度忽略不计);
(2)制造这个冷水塔的侧面需要多少平方米的钢板?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.直线l:y=$\sqrt{3}$x+2与圆O:x2+y2=4交于A、B两点,分别过A、B两点作圆O的切线,这两条切线相交于C点,将向量$\overrightarrow{OC}$绕原点O逆时针旋转角度θ后,得到向量$\overrightarrow{OD}$,当θ变化时,$\overrightarrow{AD}$•$\overrightarrow{BD}$的最大值是(  )
A.18B.22C.12D.24

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知cosα=$\frac{3}{5}$,α∈(-$\frac{π}{2}$,0),则tanα的值为-$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在区间[-1,1]上任取两个数a,b,在下列条件时,分别求不等式x2+2ax+b2≥0恒成立时的概率:
(1)当a,b均为整数时;
(2)当a,b均为实数时.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数 f (x)=sinx-xcosx.现有下列结论:
①?x∈[0,π],f(x)≥0;
②若0<x1<x2<π,则$\frac{{x}_{1}}{{x}_{2}}$<$\frac{{sin{x_1}}}{{sin{x_2}}}$;
③若a<$\frac{sinx}{x}$<b对?x∈[0,$\frac{π}{2}$]恒成立,则 a的最大值为$\frac{2}{π}$,b 的最小值为1.
其中正确结论的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=$\frac{a}{x}$+xlnx,g(x)=x3-x2-3.其中a∈R.
(1)当a=2时,求曲线y=f(x)在点P(1,f(1))处的切线方程;
(2)若存在x1,x2∈[0,2],使得g(x1)-g(x2)≥M成立,求整数M的最大值;
(3)若对任意的s,t∈[$\frac{1}{2}$,2]都有f(s)≥g(t)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在平面直角坐标系xOy中,过点P(-2,0)的直线与圆x2+y2=1相切于点T,与圆(x-a)2+(y-$\sqrt{3}}$)2=3相交于点R,S,且PT=RS,则正数a的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设l,m为两条不同的直线,α,β是两个不同的平面,下列命题中正确的是(  )
A.若l?α,m?α,l∥β,m∥β,则α∥β
B.若l?α,m?β,l∥m,则α∥β
C.若l?α,m?α,l∩m=点P,l∥β,m∥β,则α∥β
D.若l∥α,l∥β,则α∥β

查看答案和解析>>

同步练习册答案