精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(I)判断曲线在点处的切线与曲线的公共点个数;

(II)若函数有且仅有一个零点,求的值;

(III)若函数有两个极值点,且,求的取值范围.

【答案】I)详见解析;(II;(III

【解析】

I)利用导函数求出函数在点(1)处的切线方程,和函数联立后由判别式分析求解公共点个数;

II)写出函数表达式,由得到,求函数的最小值既是所要求的的值;

III)写出函数的表达式,构造辅助函数,由原函数的极值点是其导函数的零点分析导函数对应方程根的情况,分离参数后构造新的辅助函数,求函数的最小值,然后分析当大于函数最小值的情况,进一步求出当时的的值,则答案可求.

解:(I)由,得

(1),又(1)

曲线在点(1)处的切线方程为

代入,得

时,△,有两个公共点;

时,△,有一个公共点;

时,△,没有公共点.

II

,得

上递减,在上递增,

因此,(1)

III

有两个不同的根

且当时,的增大而增大;

时,

此时

时,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出停课不停学的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不少于120分的有10人,统计成绩后得到如下列联表:

分数不少于120

分数不足120

合计

线上学习时间不少于5小时

4

19

线上学习时间不足5小时

10

合计

45

1)请完成上面列联表;并判断是否有99%的把握认为高三学生的数学成绩与学生线上学习时间有关

2)在上述样本中从分数不少于120分的学生中,按照分层抽样的方法,抽到线上学习时间不少于5小时和线上学习时间不足5小时的学生共5名,若在这5名学生中随机抽取2人,求至少1人每周线上学习时间不足5小时的概率.

(下面的临界值表供参考)

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动圆与圆外切,并与直线相切,则动圆圆心的轨迹方程为__________,过点作倾斜角互补的两条直线,分别与圆心的轨迹相交于两点,则直线的斜率为__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,是以为斜边的等腰直角三角形,沿着翻折成三棱锥的过程中,直线与平面所成的角均小于直线与平面所成的角,设二面角的大小分别为,则( ).

A.B.

C.存在D.的大小关系不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱台的下底面是边长为2的正三角形,上地面是边长为1的正三角形.在下底面的射影为的重心,且.

1)证明:平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的零点个数;

2)若为给定的常数,且),记在区间上的最小值为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),在以坐标原点为极点、以轴正半轴为极轴的极坐标系中,曲线的极坐标方程为,若直线与曲线交于两点.

1)求线段的中点的直角坐标;

2)设点是曲线上任意一点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱所有的棱长均为1,C.

1求证:

2,求直线和平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校水果店有苹果、梨、香蕉、石榴、橘子、葡萄、西柚等种水果,西柚数量不多,只够一个人购买,甲乙丙丁戊位同学去购买,每人只能选择其中一种,这位同学购买后,恰好买了其中三种水果,则他们购买水果的可能情况有___________种.

查看答案和解析>>

同步练习册答案