【题目】已知M是正四面体ABCD棱AB的中点,N是棱CD上异于端点C,D的任一点,则下列结论中,正确的个数有( )
(1)MN⊥AB;
(2)若N为中点,则MN与AD所成角为60°;
(3)平面CDM⊥平面ABN;
(4)不存在点N,使得过MN的平面与AC垂直.
A.1
B.2
C.3
D.4
【答案】C
【解析】解:(1)连结MC,MD,由三角形三线合一可得AB⊥CM,AB⊥DM,∴AB⊥平面MCD,
∵MN平面MCD,∴AB⊥MN,故(1)正确;
(2)取BD中点E,连结ME,NE,则∠NME为MN与AD所成角,
连结BN,由(1)知BM⊥MN,设正四面体棱长为1,则BM= , BN= , ∴MN= ,
ME=NE= , ∴cos∠NME== , ∴∠NME=45°,故(2)不正确;
(3)由(1)知AB⊥平面CDM,∵AB平面ABN,∴平面CDM⊥平面ABN,故(3)正确;
(4)取BC早点F,连结MF,DF,假设存在点N,使得过MN的平面与AC垂直,
∴AC⊥MN,∵MF∥AC,∴MF⊥MN,
∵DF=DM= , ∴∠FMD<90°,同理,∠CMF<90°.
当N从D向C移动时,∠FMN先减小,后增大,故∠FMN<90°,与MF⊥MN矛盾.
∴不存在点N,使得过MN的平面与AC垂直,故(4)正确.
故选:C.
【考点精析】关于本题考查的平面与平面垂直的判定,需要了解一个平面过另一个平面的垂线,则这两个平面垂直才能得出正确答案.
科目:高中数学 来源: 题型:
【题目】“累积净化量”是空气净化器质量的一个重要衡量指标,它是指空气净化从开始使用到净化效率为50%时对颗粒物的累积净化量,以克表示,根据《空气净化器》国家标准,对空气净化器的累计净化量有如下等级划分:
累积净化量(克) | 12以上 | |||
等级 |
为了了解一批空气净化器(共5000台)的质量,随机抽取台机器作为样本进行估计,已知这台机器的累积净化量都分布在区间中,按照、、、、均匀分组,其中累积净化量在的所有数据有:4.5,4.6,5.2,5.3,5.7和5.9,并绘制了频率分布直方图,如图所示:
(1)求的值及频率分布直方图中的值;
(2)以样本估计总体,试估计这批空气净化器(共5000台)中等级为的空气净化器有多少台?
(3)从累积净化量在的样本中随机抽取2台,求恰好有1台等级为的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知△OAB的顶点坐标为O(0,0),A(2,9),B(6,﹣3),点P的横坐标为14,且 =λ ,点Q是边AB上一点,且 =0.
(1)求实数λ的值与点P的坐标;
(2)求点Q的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠DAB=60°.侧面PAD为正三角形,且平面PAD⊥平面ABCD,则下列说法错误的是( )
A.在棱AD上存在点M,使AD⊥平面PMB
B.异面直线AD与PB所成的角为90°
C.二面角P﹣BC﹣A的大小为45°
D.BD⊥平面PAC
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,四边形ABCD是菱形,AC=6,BD=8,E是PB上任意一点,△AEC面积的最小值是3.
(Ⅰ)求证:AC⊥DE;
(Ⅱ)求四棱锥P﹣ABCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是将一正方体货物沿坡面AB装进汽车货厢的平面示意图.已知长方体货厢的高度BC为 米,tanA= ,现把图中的货物继续往前平移,当货物顶点D与C重合时,仍可把货物放平装进货厢,求BD的长.(结果保留根号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线y=﹣ +bx+c与y轴交于点C,与x轴的两个交点分别为A(﹣4,0),B(1,0).
(1)求抛物线的解析式;
(2)已知点P在抛物线上,连接PC,PB,若△PBC是以BC为直角边的直角三角形,求点P的坐标;
(3)已知点E在x轴上,点F在抛物线上,是否存在以A,C,E,F为顶点的四边形是平行四边形?若存在,请直接写出点E的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com