【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为菱形,∠DAB=60°.侧面PAD为正三角形,且平面PAD⊥平面ABCD,则下列说法错误的是( )![]()
A.在棱AD上存在点M,使AD⊥平面PMB
B.异面直线AD与PB所成的角为90°
C.二面角P﹣BC﹣A的大小为45°
D.BD⊥平面PAC
【答案】D
【解析】解:对于A,取AD的中点M,连PM,BM,则∵侧面PAD为正三角形,
∴PM⊥AD,
又底面ABCD是∠DAB=60°的菱形,
∴三角形ABD是等边三角形,
∴AD⊥BM,
∴AD⊥平面PBM,故A正确,
对于B,∵AD⊥平面PBM,
∴AD⊥PB,即异面直线AD与PB所成的角为90°,故B正确,
对于C,∵底面ABCD为菱形,∠DAB=60°平面PAD⊥平面ABCD,
∴BM⊥BC,则∠PBM是二面角P﹣BC﹣A的平面角,
设AB=1,则BM=
, PM=
,
在直角三角形PBM中,tan∠PBM=
,
即∠PBM=45°,故二面角P﹣BC﹣A的大小为45°,故C正确,
故错误的是D,
故选:D.![]()
【考点精析】本题主要考查了平面与平面垂直的性质的相关知识点,需要掌握两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入
万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从
开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为.]
(1)根据频率分布直方图计算图中各小长方形的宽度;
(2)试估计该公司投入
万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入 | 1 | 2 | 3 | 4 | 5 |
销售收益 | 2 | 3 | 2 | 7 |
由表中的数据显示,
与
之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出
关于
的回归直线方程.
![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数y=a﹣bcos(2x+
)(b>0)的最大值为3,最小值为﹣1.
(1)求a,b的值;
(2)当求x∈[
,
π]时,函数g(x)=4asin(bx﹣
)的值域.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知M是正四面体ABCD棱AB的中点,N是棱CD上异于端点C,D的任一点,则下列结论中,正确的个数有( )
(1)MN⊥AB;
(2)若N为中点,则MN与AD所成角为60°;
(3)平面CDM⊥平面ABN;
(4)不存在点N,使得过MN的平面与AC垂直.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,平面
平面
,
是等腰直角三角形,
,四边形
是直角梯形,
,
,
,
,
分别为
,
的中点.
(I)求证:
平面
.
(II)求直线
和平面
所成角的正弦值.
(III)能否在
上找一点
,使得
平面
?若能,请指出点
的位置,并加以证明;若不能,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥P﹣ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E、F分别是BC、PC的中点.
(1)判定AE与PD是否垂直,并说明理由.
(2)设AB=2,若H为PD上的动点,若△AHE面积的最小值为
, 求四棱锥P﹣ABCD的体积.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种药种植基地有两处种植区的药材需在下周一、周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘,由于下雨会影响药材的收益,若基地收益如下表所示:已知下周一和下周二无雨的概率相同且为
,两天是否下雨互不影响,若两天都下雨的概率为![]()
![]()
(1)求
及基地的预期收益;
(2)若该基地额外聘请工人,可在周一当天完成全部采摘任务,若周一无雨时收益为
万元,有雨时收益为
万元,且额外聘请工人的成本为
元,问该基地是否应该额外聘请工人,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,AB是圆O的直径,点C在圆O上,矩形DCBE所在的平面垂直于圆O所在的平面,
,
.
(1)若
,求三棱锥
的体积;
(2)证明:平面ACD⊥平面BCDE;
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com