精英家教网 > 高中数学 > 题目详情
3.已知双曲线${x^2}-\frac{y^2}{b^2}=1({b>0})$的离心率为$\sqrt{3}$,则b=$\sqrt{2}$.

分析 利用双曲线的离心率列出关系式求解即可.

解答 解:双曲线${x^2}-\frac{y^2}{b^2}=1({b>0})$,可得a=1,e=$\frac{c}{a}=\sqrt{3}$,可得c=$\sqrt{3}$,则b=$\sqrt{{c}^{2}-{a}^{2}}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查双曲线的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.在棱长为a的正方体ABCD-A1B1C1D1中,点M是AB的中点,则点A到平面A1DM的距离为(  )
A.$\frac{\sqrt{6}}{6}$aB.$\frac{\sqrt{6}}{3}$aC.$\frac{\sqrt{2}}{2}$aD.$\frac{1}{2}$a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知数列{an}是公差为2的等差数列,且a1,a2,a5成等比数列,则S8=(  )
A.36B.49C.64D.81

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知复数z=(a-i)(1+i)(a∈R,i是虚数单位)是实数,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,$\overrightarrow{AB}•\overrightarrow{AC}$=8,设∠BAC=θ,△ABC的面积是S,且满足$\frac{{4\sqrt{3}}}{3}≤S≤4\sqrt{3}$.
(1)求θ的取值范围;
(2)求函数f(θ)=2sin2θ-$\sqrt{3}$sin2θ的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{1+2lnx}{x^2}$,且方程f(x)-m=0有两个相异实数根x1,x2(x1>x2).
(1)求函数f(x)的单调递增区间;
(2)求实数m的取值范围;
(3)证明:x12x2+x1x22>2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的焦距为2c,直线l:y=kx-kc,若当$k=\sqrt{3}$时,直线l与双曲线的左右两支各有一个交点;且当$k=\sqrt{15}$时,直线l与双曲线的右支有两个不同的交点,则双曲线离心率的取值范围为(2,4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知A、B分别为椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的左、右顶点,两个不同的动点P、Q在椭圆C上且关于x轴对称,设直线AP、BQ的斜率分别为m、n,则当$\frac{1}{2mn}$+ln|m|+ln|n|取最小值时,椭圆C的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{2}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)=$\sqrt{3}$sinxcosx-sin2x,把y=f(x)的图象向右平移$\frac{π}{12}$个单位,再向上平移$\frac{1}{2}$个单位,得到y=g(x)的图象,则g($\frac{π}{4}$)=(  )
A.$\frac{\sqrt{2}}{2}$B.1C.-$\frac{\sqrt{2}}{2}$D.-1

查看答案和解析>>

同步练习册答案