![]()
图
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
| 1 |
| 2 |
| x2 |
| a2 |
| y2 |
| b2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
| ||
| 2 |
| 1 |
| kk1 |
| 1 |
| kk2 |
查看答案和解析>>
科目:高中数学 来源:2013年普通高等学校招生全国统一考试(山东卷)、理科数学 题型:044
椭圆C:
的左、右焦点分别是F1.F2,离心率为
过F,且垂直于x轴的直线被椭圆C截得的线段长为l.
(Ⅰ)求椭圆C的方程;
(Ⅱ)点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),求m的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点p作斜率为k的直线l,使得l与椭圆C有且只有一个公共点.
设直线PF1,PF2的斜率分别为k1,k2,若k≠0,试证明
为定值,并求出这个定值.
查看答案和解析>>
科目:高中数学 来源:2013年全国普通高等学校招生统一考试理科数学(山东卷解析版) 题型:解答题
椭圆
:
的左、右焦点分别是
,离心率为
,过
且垂直于
轴的直线被椭圆
截得的线段长为
。
(Ⅰ)求椭圆
的方程;
(Ⅱ)点
是椭圆
上除长轴端点外的任一点,连接
,设
的角平分线
交
的长轴于点
,求
的取值范围;
(Ⅲ)在(Ⅱ)的条件下,过点
作斜率为
的直线
,使
与椭圆
有且只有一个公共点,设直线的
斜率分别为
。若
,试证明
为定值,并求出这个定值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com