分析 (1)连接BC1,设BC1∩B1C=O,连接ON,证明ON∥AC1,即可证明AC1∥平面B1CN;
(2)建立空间直角坐标系,证明:$\overrightarrow{{A}_{1}M}•\overrightarrow{A{C}_{1}}$=0,$\overrightarrow{{A}_{1}M}•\overrightarrow{{B}_{1}{C}_{1}}$=0,可得A1M⊥AC1,A1M⊥B1C1,即可证明A1M⊥平面AB1C1.
解答 ![]()
证明:(1)连接BC1,设BC1∩B1C=O,连接ON,
∵点O、N分别为BC1,BA的中点,
∴ON∥AC1,
又∵ON?平面BC1N,AC1?平面BC1N,
∴AC1∥平面B1CN…(4分)
(2)证明:∵侧面B1BCC1为矩形,
∴CC1⊥BC.
∵侧面B1BCC1与底面ABC垂直,且交于BC
∴CC1⊥平面ABC.
如图所示,以点C为坐标原点,建立空间直角坐标系C-xyz.
△ABC中,∠ACB=90°,∠BAC=30°,BC=1,∴AB=2,AC=$\sqrt{3}$,
则C(0,0,0),A($\sqrt{3}$,0,0),B(0,1,0),C1(0,0,$\sqrt{6}$),A1($\sqrt{3}$,0,$\sqrt{6}$),B1(0,1,$\sqrt{6}$),M(0,0,$\frac{\sqrt{6}}{2}$)
∴$\overrightarrow{{A}_{1}M}$=(-$\sqrt{3}$,0,-$\frac{\sqrt{6}}{2}$),$\overrightarrow{A{C}_{1}}$=(-$\sqrt{3}$,0,$\sqrt{6}$),$\overrightarrow{{B}_{1}{C}_{1}}$=(0,-1,0)
∴$\overrightarrow{{A}_{1}M}•\overrightarrow{A{C}_{1}}$=0,$\overrightarrow{{A}_{1}M}•\overrightarrow{{B}_{1}{C}_{1}}$=0,
∴A1M⊥AC1,A1M⊥B1C1,
∵AC1∩B1C1=C1,∴A1M⊥平面AB1C1.
点评 本题考查直线与平面平行、垂直的证明,考查向量知识的运用,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$,3,$\frac{π}{4}$ | B. | 4π,-3,-$\frac{π}{4}$ | C. | 4π,3,$\frac{π}{4}$ | D. | 2π,3,$\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 组号 | 分组 | 回答正确的人数 | 回答正确的人数 占本组的频率 |
| 第1组 | [15,25) | a | 0.5 |
| 第2组 | [25,35) | 18 | x |
| 第3组 | [35,45) | b | 0.9 |
| 第4组 | [45,55) | 9 | 0.36 |
| 第5组 | [55,65] | 3 | y |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com