分析 由题意可得:直线AB的方程为:y=$\frac{1}{2}$(x-1),设A(x1,y1),B(x2,y2),与椭圆方程联立化为:4x2-2x-11=0,
可得$|{AB}|=\sqrt{1+{k^2}}|{{x_1}-{x_2}}|=\sqrt{1+{k^2}}•\sqrt{({x_1}+{x_2}{)^2}-4{x_1}{x_2}}$,求出O到直线AB:x-2y-1=0的距离d,即可得出△OAB的面积.
解答 解:椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,可得c=$\sqrt{{a}^{2}-{b}^{2}}$=1,∴椭圆的右焦点为F2(1,0).
∴直线AB的方程为:y=$\frac{1}{2}$(x-1),
设A(x1,y1),B(x2,y2),联立$\left\{\begin{array}{l}{y=\frac{1}{2}(x-1)}\\{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\end{array}\right.$,得4x2-2x-11=0,
∴$\left\{{\begin{array}{l}{{x_1}+{x_2}=\frac{1}{2}}\\{{x_1}{x_2}=-\frac{11}{4}}\end{array}}\right.$,
∴$|{AB}|=\sqrt{1+{k^2}}|{{x_1}-{x_2}}|=\sqrt{1+{k^2}}•\sqrt{({x_1}+{x_2}{)^2}-4{x_1}{x_2}}$=$\sqrt{1+\frac{1}{4}}•\sqrt{\frac{1}{4}+11}=\frac{15}{4}$,
O到直线AB:x-2y-1=0的距离$d=\frac{1}{{\sqrt{5}}}=\frac{{\sqrt{5}}}{5}$,
∴${S_{△OAB}}=\frac{1}{2}×\frac{15}{4}×\frac{{\sqrt{5}}}{5}=\frac{{3\sqrt{5}}}{8}$.
点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交弦长问题、一元二次方程的根与系数的关系、点到直线的距离公式,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | 9π | B. | 36π | C. | $\frac{9}{2}π$ | D. | $\frac{9}{4}π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{\sqrt{66}}}{11}$ | B. | $\frac{{2\sqrt{22}}}{11}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p:0∈N,q:若A∪B=A,则A⊆B | |
| B. | p:若b2=ac,则a,b,c成等比数列;q:y=cosx在$[\frac{π}{2},\frac{3π}{2}]$上是减函数 | |
| C. | p:若$\overrightarrow a•\overrightarrow b>0$,则$\overrightarrow a$与$\overrightarrow b$的夹角为锐角;q:当a<-1时,不等式a2x2-2x+1>0恒成立 | |
| D. | p:在极坐标系中,圆$ρ=2cos(θ-\frac{π}{4})$的圆心的极坐标是$(1,-\frac{π}{4})$;q:抛物线y=4x2的焦点坐标是(0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 增函数且有最大值 | B. | 增函数且没有最大值 | ||
| C. | 不是增函数且有最大值 | D. | 不是增函数且没有最大值 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com