精英家教网 > 高中数学 > 题目详情
18.数列{an}的通项公式an=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$,若{an}的前n项和为24,则n=624.

分析 an=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$=$\sqrt{n+1}-\sqrt{n}$,利用“裂项求和”方法即可得出.

解答 解:an=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$=$\sqrt{n+1}-\sqrt{n}$,
∴{an}的前n项和=$(\sqrt{2}-1)$+$(\sqrt{3}-\sqrt{2})$+…+($\sqrt{n+1}-\sqrt{n}$)=$\sqrt{n+1}$-1=24,
解得n=624.
故答案为:624.

点评 本题考查了“裂项求和”方法、根式的运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.过椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1右焦点作一条斜率为$\frac{1}{2}$的直线与椭圆交于A、B两点,O为坐标原点,求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数$y=f'(x)cos(x-\frac{π}{2})$的图象先向左平移$\frac{π}{4}$个单位,然后向上平移1个单位,得到函数y=2cos2x的图象,则$f'(x-\frac{7π}{2})$是(  )
A.-2sinxB.-2cosxC.2sinxD.2cosx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.0.5-1+40.5=4,lg2+lg5-($\frac{π}{23}$)0=0,10lg2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.2015年“双11”网购在狂欢节后,某教师对本班42名学生网上购物情况进行调查,经统计得到如下的x×2列联表:(单位:人)
电子产品服饰总计
男生16824
女生61218
总计222042
(1)据此判断能否在犯错误的概率不超过0.05的前提下认为购买“电子产品”或“服饰”与性别有关?
下面是临界值表供参考:
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
(2)在统计结果中,按性别用分层抽样的方法抽取7位学生进行问卷调查.
①求抽取的男生和女生的人数;
②再从这7位学生中选取2位进行面对面的交流,求这2位学生都是男生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax+1n(x-1),其中a为常数.
(1)若h(x)=f(x+1),试讨论h(x)的单调区间;
(2)若$a=\frac{1}{1-e}$时,存在x使得不等式$\sqrt{{f^2}(x)}-\frac{e}{e-1}≤\frac{21nx+bx}{2x}$成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.设函数f(x)=(1-2x)10,则f′(1)=20.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.为了判断高中生的文理科选修是否与性别有关,随机调查了50名学生,得到如下2×2列联表:
理科文科
1410
620
能否在犯错误的概率不超过0.05的前提下认为选修文科与性别有关?
($P({K^2}≥3.841)≈0.05,P({K^2}≥5.024)≈0.025,{K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在x轴上有一点P,它与点P1(4,1,2)之间的距离为$\sqrt{30}$,则点P的坐标是(9,0,0)或(-1,0,0).

查看答案和解析>>

同步练习册答案