分析 an=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$=$\sqrt{n+1}-\sqrt{n}$,利用“裂项求和”方法即可得出.
解答 解:an=$\frac{1}{\sqrt{n}+\sqrt{n+1}}$=$\sqrt{n+1}-\sqrt{n}$,
∴{an}的前n项和=$(\sqrt{2}-1)$+$(\sqrt{3}-\sqrt{2})$+…+($\sqrt{n+1}-\sqrt{n}$)=$\sqrt{n+1}$-1=24,
解得n=624.
故答案为:624.
点评 本题考查了“裂项求和”方法、根式的运算性质,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2sinx | B. | -2cosx | C. | 2sinx | D. | 2cosx |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 电子产品 | 服饰 | 总计 | |
| 男生 | 16 | 8 | 24 |
| 女生 | 6 | 12 | 18 |
| 总计 | 22 | 20 | 42 |
| P(K2≥k0) | 0.10 | 0.05 | 0.010 | 0.005 |
| k0 | 2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 理科 | 文科 | |
| 男 | 14 | 10 |
| 女 | 6 | 20 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com