精英家教网 > 高中数学 > 题目详情
19.已知二面角α-l-β的大小为60°,点A∈α,AC⊥l,C垂足,B∈β,BD⊥l,D为垂足,若$AB=\sqrt{3}$,AC=BD=1,则D到平面ABC的距离等于(  )
A.$\frac{{\sqrt{66}}}{11}$B.$\frac{{2\sqrt{22}}}{11}$C.$\frac{{\sqrt{6}}}{3}$D.1

分析 由题意通过等体积法,求出三棱锥的体积,然后求出D到平面ABC的距离.

解答 解:由题意,二面角α-l-β,点A∈α,AC⊥l,C为垂足,B∈β,BD⊥l,D为垂足,
若$AB=\sqrt{3}$,AC=BD=1,则D到平面ABC的距离转化为三棱锥D-ABC的高为h,

所以AD=$\sqrt{2}$,CD=$\sqrt{3-1}$=$\sqrt{2}$,BC=$\sqrt{3}$,
∴S△ABC=$\frac{1}{2}×1×\sqrt{3-\frac{1}{4}}$=$\frac{\sqrt{11}}{4}$,
由VB-ACD=VD-ABC可知$\frac{1}{3}×\frac{1}{2}×1×\sqrt{2}×\frac{\sqrt{3}}{2}$=$\frac{1}{3}×\frac{\sqrt{11}}{4}$h
所以,h=$\frac{\sqrt{66}}{11}$
故选:A.

点评 本题考查求D到平面ABC的距离,考查空间角,考查体积的计算,正确利用等体积法是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.三视图如图所示的几何体的最长棱的长度为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.k为何值时,直线y=kx+2和曲线$\frac{x^2}{3}+\frac{y^2}{2}=1$有两个公共点?有一个公共点?没有公共点?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,在三棱锥A-BCD中,△ABC和△BCD都为正三角形且BC=2,$AD=2\sqrt{3}$,E,F,H分别是棱AB,BD,AC的中点,G为FD的中点.
(1)求异面直线AD和EC所成的角的大小;
(2)求证:直线GH∥平面CEF.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数$f(x)=\frac{{\sqrt{16-{4^x}}}}{x-1}$的定义域是(  )
A.[2,+∞)B.(-∞,2]C.(-∞,1)∪(1,2]D.(0,1)∪(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.过原点的直线l与圆x2+y2-10x+24=0相交与A、B两点,
(Ⅰ)当弦AB长为$\sqrt{3}$时,求直线l的方程.
(Ⅱ)求弦AB的中点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ax2-2x+1
(1)若函数y=f(x)在x∈[1,2]上是减函数,求实数a的取值范围
(2)当x∈[1,2]时,f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.过椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1右焦点作一条斜率为$\frac{1}{2}$的直线与椭圆交于A、B两点,O为坐标原点,求△OAB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.将函数$y=f'(x)cos(x-\frac{π}{2})$的图象先向左平移$\frac{π}{4}$个单位,然后向上平移1个单位,得到函数y=2cos2x的图象,则$f'(x-\frac{7π}{2})$是(  )
A.-2sinxB.-2cosxC.2sinxD.2cosx

查看答案和解析>>

同步练习册答案