精英家教网 > 高中数学 > 题目详情
7.如图,在三棱锥A-BCD中,△ABC和△BCD都为正三角形且BC=2,$AD=2\sqrt{3}$,E,F,H分别是棱AB,BD,AC的中点,G为FD的中点.
(1)求异面直线AD和EC所成的角的大小;
(2)求证:直线GH∥平面CEF.

分析 (1)确定∠CEF为异面直线AD和EC所成的角,即可求异面直线AD和EC所成的角的大小;
(2)连接BH交CE于点O,连接FO,证明:FO∥GH,即可证明直线GH∥平面CEF.

解答 (1)解:∵E,F分别是AB,BD的中点,
∴AD∥FE,
∴∠CEF为异面直线AD和EC所成的角.
在△CFE中,可求$CF=CE=\sqrt{3}$,$FE=\sqrt{3}$,∠ECF=60°,
故∠CEF=60°,即异面直线AD和EC所成的角是60°.
(2)证明:连接BH交CE于点O,连接FO,
∵E为AB的中点,H为AC的中点,
∴O为△ABC的重心,
∴$\frac{BO}{OH}=\frac{2}{1}$.
∵F为BD的中点,G为FD的中点,
∴$\frac{BF}{FG}=\frac{2}{1}$,
∴$\frac{BO}{OH}=\frac{BF}{FG}$,
∴FO∥GH,
∵FO?面CEF,GH?面CEF,
∴GH∥面CEF.

点评 本题考查空间角,考查线面平行的判定,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知集合A={(x,y)|(x-1)2+y2≤4,x,y∈R}与集合B={(x,y)|x-y+m≤0},且恒满足A⊆B,则实数m的取值范围为$m≤-2\sqrt{2}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.三棱锥P-ABC中,PA⊥平面ABC,BC⊥CA,AC=1,BC=2,PA=2,则该三棱锥外接球的表面积为(  )
A.B.36πC.$\frac{9}{2}π$D.$\frac{9}{4}π$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知实数x,y满足约束条件$\left\{\begin{array}{l}y≥0\\ y≤x\\ 2x+y-9≤0\end{array}\right.$时,所表示的平面区域为D,则z=x+2y的最大值等于9;若直线y=a(x+1)与区域D有公共点,则a的取值范围是[0,$\frac{3}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知;a,b表示不同的直线,α,β表示不同的平面,现有下列命题:①$\left.\begin{array}{l}{a∥b}\\{a∥α}\end{array}\right\}$⇒b∥α,②$\left.\begin{array}{l}{a⊥α}\\{b∥α}\end{array}\right\}$⇒a⊥b,③$\left.\begin{array}{l}{a⊥b}\\{α∥β}\end{array}\right\}$⇒a⊥α,④$\left.\begin{array}{l}{a∥α}\\{α∥β}\end{array}\right\}$⇒α∥β,其中真命题有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设x=1与x=3是函数f(x)=alnx+bx2+x的两个极值点.
(1)试确定常数a和b的值;
(2)试判断x=1,x=3是函数f(x)的极大值点还是极小值点,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知二面角α-l-β的大小为60°,点A∈α,AC⊥l,C垂足,B∈β,BD⊥l,D为垂足,若$AB=\sqrt{3}$,AC=BD=1,则D到平面ABC的距离等于(  )
A.$\frac{{\sqrt{66}}}{11}$B.$\frac{{2\sqrt{22}}}{11}$C.$\frac{{\sqrt{6}}}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列各组命题中,满足“p∨q为真,p∧q为假,¬p为真”的是(  )
A.p:0∈N,q:若A∪B=A,则A⊆B
B.p:若b2=ac,则a,b,c成等比数列;q:y=cosx在$[\frac{π}{2},\frac{3π}{2}]$上是减函数
C.p:若$\overrightarrow a•\overrightarrow b>0$,则$\overrightarrow a$与$\overrightarrow b$的夹角为锐角;q:当a<-1时,不等式a2x2-2x+1>0恒成立
D.p:在极坐标系中,圆$ρ=2cos(θ-\frac{π}{4})$的圆心的极坐标是$(1,-\frac{π}{4})$;q:抛物线y=4x2的焦点坐标是(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若三棱锥的一条棱长为x,其余棱长均为1,体积是V(x),则函数V(x)在其定义域上为(  )
A.增函数且有最大值B.增函数且没有最大值
C.不是增函数且有最大值D.不是增函数且没有最大值

查看答案和解析>>

同步练习册答案