| A. | 9π | B. | 36π | C. | $\frac{9}{2}π$ | D. | $\frac{9}{4}π$ |
分析 根据题意,证出BC⊥平面PAC,PB是三棱锥P-ABC的外接球直径.利用勾股定理结合题中数据算出PB=3,得外接球半径R=$\frac{3}{2}$,从而得到所求外接球的表面积
解答
解:PA⊥平面ABC,AC⊥BC,
∴BC⊥平面PAC,PB是三棱锥P-ABC的外接球直径;
∵Rt△PBA中,AB=$\sqrt{5}$,PA=2
∴PB=3,可得外接球半径R=$\frac{1}{2}$PB=$\frac{3}{2}$,
∴外接球的表面积S=4πR2=9π
故选A.
点评 本题在特殊三棱锥中求外接球的表面积,着重考查了线面垂直的判定与性质、勾股定理和球的表面积公式等知识,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 12 | B. | 21 | C. | 26 | D. | 63 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$,3,$\frac{π}{4}$ | B. | 4π,-3,-$\frac{π}{4}$ | C. | 4π,3,$\frac{π}{4}$ | D. | 2π,3,$\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com