精英家教网 > 高中数学 > 题目详情
已知y=f(x)是偶函数,当x>0时,f(x)=x+
4
x
,当x∈[-3,-1]时,记f(x)的最大值为m,最小值为n,则m-n等于(  )
分析:根据函数是偶函数,问题转化为当x∈[1,3]时,求f(x)=x+
4
x
的最大值与最小值,确定函数的单调性,即可求得结论.
解答:解:由题意,当x∈[1,3]时,f(x)=x+
4
x
的最大值为m,最小值为n,
∵函数在[1,2]上单调递减,在[2,3]上单调递增
∴x=2时,函数取得最小值,即n=4
∴f(1)=5,f(3)=3+
4
3

∴x=1时,函数取得最大值,即m=5
∴m-n=5-4=1
故选B.
点评:本题考查函数奇偶性与单调性的结合,考查学生分析转化问题的能力,考查计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-1,1]上的函数,若对于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0
(1)判断函数的奇偶性;
(2)判断函数f(x)在[-1,1]上是增函数,还是减函数,并用单调性定义证明你的结论;
(3)设f(1)=1,若f(x)<(1-2a)m+2,对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在[-1,1]上的函数,若对于任意的x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0.
(1)求f(0)的值;
(2)判断函数的奇偶性;
(3)判断函数f(x)在[-1,1]上是增函数还是减函数,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)是定义在R上的不恒为零的函数,且对于任意的a,b∈R,都满足:f(a•b)=af(b)+bf(a).
(1)求f(1)的值;
(2)判断y=f(x)的奇偶性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)是定义在[-1,1]上的函数,若对于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0
(1)判断函数的奇偶性;
(2)判断函数f(x)在[-1,1]上是增函数,还是减函数,并用单调性定义证明你的结论;
(3)设f(1)=1,若f(x)<(1-2a)m+2,对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)是定义在[-1,1]上的函数,若对于任意x,y∈[-1,1],都有f(x+y)=f(x)+f(y),且x>0时,有f(x)>0
(1)判断函数的奇偶性;
(2)判断函数f(x)在[-1,1]上是增函数,还是减函数,并用单调性定义证明你的结论;
(3)设f(1)=1,若f(x)<(1-2a)m+2,对所有x∈[-1,1],a∈[-1,1]恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案