精英家教网 > 高中数学 > 题目详情
如图,已知过点D(0,-2)作抛物线C1=2py(p>0)的切线l,切点A在第二象限.
(Ⅰ)求点A的纵坐标;
(Ⅱ)若离心率为的椭圆(a>b>0)恰好经过点A,设直线l交椭圆的另一点为B,记直线l,OA,OB的斜率分别为k,k1,k2,若k1+2k2=4k,求椭圆方程.
解:(Ⅰ)由设切点,且,由切线的斜率为,得的方程为,又点上,
,即点的纵坐标..........4分
(Ⅱ)由(Ⅰ)得,切线斜率
,切线方程为,由,得
所以椭圆方程为,且过 ……6分

,                              ........8分


……….10分
代入得:,所以
椭圆方程为.                           ……….12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

椭圆的一个焦点是(0,2),那么(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分) 已知抛物线,顶点为O,动直线与抛物
线交于两点
(I)求证:是一个与无关的常数;
(II)求满足的点的轨迹方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,直线l,椭圆C分别为椭圆C的左、右焦点。
(Ⅰ)当直线l过右焦点时,求直线l的方程;
(Ⅱ)设直线l与椭圆C交于AB两点。
(ⅰ)求线段AB长度的最大值;
(ⅱ)的重心分别为GH。若原点O在以线段GH为直径的圆内,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分10分)
已知椭圆的方程为,称圆心在坐标原点,半径为的圆为椭圆的“伴随圆”,椭圆的短轴长为2,离心率为
(Ⅰ)求椭圆及其“伴随圆”的方程;
(Ⅱ)若直线与椭圆交于两点,与其“伴随圆”交于两点,当 时,求△面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

.已知椭圆的离心率,则的值为:                  

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的右焦点为,直线 轴交于点,若(其中为坐标原点).
(Ⅰ)求椭圆的方程;
(Ⅱ)设是椭圆上的任意一点,为圆的任意一条直径(,为直径的两个端点),求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设椭圆的左、右焦点分别为是椭圆上的一点,,原点到直线的距离为,则椭圆的离心率为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆中心在原点,焦点在坐标轴上,直线与椭圆在第一象限内的交点是,点轴上的射影恰好是椭圆的右焦点,椭圆另一个焦点是,且
(1)求椭圆的方程;
(2)直线过点,且与椭圆交于两点,求的内切圆面积的最大值

查看答案和解析>>

同步练习册答案