精英家教网 > 高中数学 > 题目详情
1.设a=1.70.3,b=log30.2,c=0.25,则a,b,c的大小关系是(  )
A.a<b<cB.b<a<cC.c<b<aD.b<c<a

分析 化简成底数相同,如果底数无法化成同底数,则利用中间值,再利用对数函数和指数函数的性质求解.

解答 解:由指数函数的性质可知,底数大于1时,是增函数,指数越大,函数值越大.
∵a=1.70.3>1.70=1,∴a>1.
由对数函数的性质可知,底数大于1时,是增函数,真数越大,函数值越大.
∵b=log30.2$<lo{{g}_{3}}^{1}=0$,∴b<0.
c=0.25=$(\frac{1}{5})^{5}<1$,∴0<c<1.
所以:b<c<a
故选:D

点评 本题考查了利用指数的运算化简及指数函数和对数函数的性质比较大小,学会利用中间值:0,1进行转化比较是关键.属于基础题,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为多少元,并求出此时生产A,B产品各少件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设函数f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三条边长,则下列命题正确的有几个.(  )
①?x∈(-∞,1),f(x)>0;
②?x∈R,使ax,bx,cx不能构成一个三角形的三条边长;
③若△ABC为钝角三角形,则?x∈(1,2),使f(x)=0.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a,b,c为△ABC的三个角A,B,C所对的边,若3sinBcosC=sinC(1-3cosB),则sinC:sinA=(  )
A.2:3B.4:3C.3:1D.3:2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)是R上的增函数,且f(sinω)+f(-cosω)>f(-sinω)+f(cosω),其中ω是锐角,并且使得g(x)=sin(ωx+$\frac{π}{4}$)在($\frac{π}{2}$,π)上单调递减,则ω的取值范围是(  )
A.($\frac{π}{4}$,$\frac{5}{4}$]B.[$\frac{5}{4}$,$\frac{π}{2}$)C.[$\frac{1}{2}$,$\frac{π}{4}$)D.[$\frac{1}{2}$,$\frac{5}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=2cos(2x+$\frac{π}{3}$)的最小正周期是(  )
A.$\frac{π}{4}$B.$\frac{1}{2}$πC.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.给出下列四个命题:
①若x>0,且x≠1,则lgx+$\frac{1}{lgx}$≥2; 
②f(x)=lg(x2+ax+1),定义域为R,则-2<a<2;
③函数y=cos(2x-$\frac{π}{3}$)的一条对称轴是直线x=$\frac{5}{12}$π;
④若x∈R,则“复数z=(1-x2)+(1+x)i为纯虚数”是“lg|x|=0”必要不充分条件.
其中,所有正确命题的序号是  ②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=asinx•cosx-$\sqrt{3}$acos2x+$\frac{{\sqrt{3}}}{2}$a+b(a>0).
(Ⅰ)写出函数的单调递增区间;
(Ⅱ)设x∈[0,$\frac{π}{2}$],f(x)的最小值是-$\sqrt{3}$,最大值是2,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.24+8$\sqrt{3}$B.16=12$\sqrt{3}$C.24+12$\sqrt{3}$D.48

查看答案和解析>>

同步练习册答案