精英家教网 > 高中数学 > 题目详情
12.设函数f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三条边长,则下列命题正确的有几个.(  )
①?x∈(-∞,1),f(x)>0;
②?x∈R,使ax,bx,cx不能构成一个三角形的三条边长;
③若△ABC为钝角三角形,则?x∈(1,2),使f(x)=0.
A.0B.1C.2D.3

分析 ①利用指数函数的性质以a.b.c构成三角形的条件进行证明.②由于涉及不可能问题,因此可以举反例进行判断.③利用函数零点的存在性定理进行判断.

解答 解:①∵a,b,c是△ABC的三条边长,
∴a+b>c,
∵c>a>0,c>b>0,
∴0$<\frac{a}{c}$<1,0<$\frac{b}{c}$<1,
当x∈(-∞,1)时,f(x)=ax+bx-cx=${c}^{x}[(\frac{a}{c})^{x}+(\frac{b}{c})^{x}-1]$>${c}^{x}•\frac{a+b-c}{c}$>0,∴①正确.
②令a=2,b=3,c=4,则a.b.c可以构成三角形,但a2=4,b2=9,c2=16却不能构成三角形,∴②正确.
③∵c>a>0,c>b>0,若△ABC为钝角三角形,∴a2+b2-c2<0,
∵f(1)=a+b-c>0,f(2)=a2+b2-c2<0,
∴根据根的存在性定理可知在区间(1,2)上存在零点,即?x∈(1,2),使f(x)=0,∴③正确.
故选:D.

点评 本题综合性较强,考查的知识点较多,考查函数零点的存在性定理,考查指数函数的性质,以及余弦定理的应用,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.若复数$\frac{2+ai}{1+i}$(a∈R)是纯虚数(i是虚数单位),则a的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知m,n是两条直线,α,β是两个平面,则下列命题中不正确的是(  )
A.若m⊥β,m?α,则α⊥βB.若m⊥α,α∥β,n?β,则m⊥n
C.若α∥β,n⊥α,m⊥β,则m∥nD.若m∥n,n∥α,α∥β,则m∥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知变量x、y,满足$\left\{\begin{array}{l}2x-y≤0\\ x-2y+3≥0\\ x≥0\end{array}\right.$,则z=1og2(2x+y+4)的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.为了了解雾霾天气对城市交通的影响,调查组队30个城市进行了抽样调查,现将所有城市从0,1,2,…,29随机编号,用系统抽样的方法抽取一个容量为5的样本,已知2号,8号,20号,26号在样本中,那么样本中还有一个城市的编号应是(  )
A.6B.12C.14D.24

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设f(x)=-$\frac{1}{x}$+ln$\frac{1+x}{1-x}$.
(1)求函数的定义域;
(2)判断函数f(x)的奇偶性;
(3)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.记max{p,q}=$\left\{\begin{array}{l}{p,p≥q}\\{q,p<q}\end{array}\right.$,记M(x,y)=max{|x2+y+1|,|y2-x+1)|},其中x,y∈R,则M(x,y)的最小值是$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设a=1.70.3,b=log30.2,c=0.25,则a,b,c的大小关系是(  )
A.a<b<cB.b<a<cC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某糖厂为了了解一条自动生产线上袋装白糖的重量,随机抽取了100袋,并称出每袋白糖的重量(单位:g),得到如表频率分布表.
分组频数频率
[485.5,490.5)10y1
[490.5,495.5)x1y2
[495.5,500.5)x2y3
10
合计100
表中数据y1,y2,y3成等差数列.
(I)将有关数据分别填入所给的频率.分布表的所有空格内,并画出频率分布直方图.
(II)在这100包白糖的重量中,估计其中位数.

查看答案和解析>>

同步练习册答案