若函数满足:在定义域内存在实数,使(k为常数),则称“f(x)关于k可线性分解”.
(Ⅰ)函数是否关于1可线性分解?请说明理由;
(Ⅱ)已知函数关于可线性分解,求的取值范围;
(Ⅲ)证明不等式:.
(Ⅰ)是关于1可线性分解;(Ⅱ)a的取值范围是;(Ⅲ)详见解析.
【解析】
试题分析:(Ⅰ)函数是否关于1可线性分解,关键是看是否存在使得成立,若成立,是关于1可线性分解,否则不是关于1可线性分解,故看是否有解,构造函数,看它是否有零点,而,观察得,,有根的存在性定理可得存在,使;(Ⅱ)先确定定义域为,函数关于可线性分解,即存在,使,即有解,整理得有解,即,从而求出的取值范围;(Ⅲ)证明不等式:,当时,,对求导,判断最大值为,可得,分别令,叠加可得证结论.
试题解析:(Ⅰ)函数的定义域是R,若是关于1可线性分解,
则定义域内存在实数,使得.
构造函数
.
∵,且在上是连续的,
∴在上至少存在一个零点.
即存在,使. 4分
(Ⅱ)的定义域为.
由已知,存在,使.
即.
整理,得,即.
∴,所以.
由且,得.
∴a的取值范围是. 9分
(Ⅲ)由(Ⅱ)知,a =1,,.
当时,,所以的单调递增区间是,当时,,所以的单调递减区间是,因此时,的最大值为,所以,即,因此得:,,,,,以上各式相加得:,即,所以,即. 14分
考点:导数在最大值、最小值问题中的应用.
科目:高中数学 来源: 题型:
1 |
e |
y |
x |
1+lny |
1+lnx |
查看答案和解析>>
科目:高中数学 来源: 题型:
x+2 |
查看答案和解析>>
科目:高中数学 来源:广东省龙川一中2011-2012学年高一上学期12月月考数学试题 题型:022
若函数f(x)在定义域内满足f(-x)=-f(x),且当0≤0≤4时,f(x)=x2+2x,则当-4≤x<0时,f(x)的解析式是_________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年黑龙江佳木斯市高三第三次调研理科数学试卷(解析版) 题型:解答题
已知函数.
(1)若函数满足,且在定义域内恒成立,求实数b的取值范围;
(2)若函数在定义域上是单调函数,求实数的取值范围;
(3)当时,试比较与的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com