精英家教网 > 高中数学 > 题目详情
10.已知数列{an}是公比为$\frac{1}{2}$的等比数列,其前n项和为Sn,且1-a2是a1与1+a3的等比中项,数列{bn}是等差数列,其前n项和Tn满足Tn=nλ•bn+1(λ为常数,且λ≠1),其中b1=8.
(1)求数列{an}的通项公式及λ的值; 
(2)比较$\frac{1}{T_1}+\frac{1}{T_2}+\frac{1}{T_3}+…+\frac{1}{T_n}$与$\frac{1}{2}{S_n}$的大小.

分析 (1)由题意得(1-a22=a1(a3+1),即(1-$\frac{1}{2}{a}_{1}$)2=a1($\frac{1}{4}{a}_{1}$+1),推导出an=($\frac{1}{2}$)n.设等差数列{bn}的公差为d,由$\left\{\begin{array}{l}{{T}_{1}=λ{b}_{2}}\\{{T}_{2}=2λ{b}_{3}}\end{array}\right.$,得$\left\{\begin{array}{l}{8=λ(8+d)}\\{16+d=2λ(8+2d)}\end{array}\right.$,求出λ=$\frac{1}{2}$.
(2)由Sn=1-($\frac{1}{2}$)n,得$\frac{1}{2}{S}_{n}$=$\frac{1}{2}-(\frac{1}{2})^{n+1}≥\frac{1}{4}$,由Tn=$\frac{1}{2}n{b}_{n+1}$,求出bn=8n,Tn=4n2+4n,从而$\frac{1}{{T}_{n}}$=$\frac{1}{4n(n+1)}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$,由此利用裂项求和法能推导出$\frac{1}{T_1}+\frac{1}{T_2}+\frac{1}{T_3}+…+\frac{1}{T_n}$<$\frac{1}{2}{S}_{n}$.

解答 解:(1)∵数列{an}是公比为$\frac{1}{2}$的等比数列,其前n项和为Sn,且1-a2是a1与1+a3的等比中项,
∴由题意得(1-a22=a1(a3+1),即(1-$\frac{1}{2}{a}_{1}$)2=a1($\frac{1}{4}{a}_{1}$+1),
解得a1=$\frac{1}{2}$.故an=($\frac{1}{2}$)n
设等差数列{bn}的公差为d,
∵数列{bn}是等差数列,其前n项和Tn满足Tn=nλ•bn+1(λ为常数,且λ≠1),其中b1=8.
∴$\left\{\begin{array}{l}{{T}_{1}=λ{b}_{2}}\\{{T}_{2}=2λ{b}_{3}}\end{array}\right.$,即$\left\{\begin{array}{l}{8=λ(8+d)}\\{16+d=2λ(8+2d)}\end{array}\right.$,
解得$\left\{\begin{array}{l}{λ=\frac{1}{2}}\\{d=8}\end{array}\right.$或$\left\{\begin{array}{l}{λ=1}\\{d=0}\end{array}\right.$(舍去),故λ=$\frac{1}{2}$..…(5分)
(2)由(1)知Sn=1-($\frac{1}{2}$)n,则$\frac{1}{2}{S}_{n}$=$\frac{1}{2}-(\frac{1}{2})^{n+1}≥\frac{1}{4}$.①
由(1)知Tn=$\frac{1}{2}n{b}_{n+1}$,
当n=1时,T1=b1=$\frac{1}{2}$b2,即b2=2b1=16,
∴公差d=b2-b1=8,则bn=8n,又Tn=nλ•bn+1
∴Tn=4n2+4n,即$\frac{1}{{T}_{n}}$=$\frac{1}{4n(n+1)}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+1})$.
∴$\frac{1}{T_1}+\frac{1}{T_2}+\frac{1}{T_3}+…+\frac{1}{T_n}$=$\frac{1}{4}$(1-$\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+…+\frac{1}{n}-\frac{1}{n+1}$)=$\frac{1}{4}(1-\frac{1}{n+1})<\frac{1}{4}$.②
由①②可知$\frac{1}{T_1}+\frac{1}{T_2}+\frac{1}{T_3}+…+\frac{1}{T_n}$<$\frac{1}{2}{S}_{n}$..…(12分)

点评 本题考查数列的通项公式及实数值的求法,考查两个数列和关于前n项和代数式的大小的判断,考查等经数列、等差数列等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知平面向量$\overline{a}$,$\overline{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,且|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=mlnx,g(x)=$\frac{x}{x+1}$(x>0).
(1)当m=1时,求曲线E:y=f(x)g(x)在x=1处的切线方程;
(2)当m=1时,$k=\frac{f(x)}{(x+1)g(x)}$恰有一个实数根,求k的取值范围;
(3)讨论函数F(x)=f(x)-g(x)在(0,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.Sn为数列{an}的前n项和.已知Sn=n2+2n
(1)求{an}的通项公式;
(2)若数列满足{bn}满足log2bn=n+log2(an-2),求数列{bn}的前n项和Tn
(3)已知数列{cn}满足cn=-$\frac{{{T_n}-6}}{{{2^{n+1}}}}$+8,若对任意n∈N*,存在x0∈[-2,2],使得c1+c2+c3+…+cn≤x2+x-2a,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知直角梯形ABCD中,AD∥BC,∠ADC=90°,A(-3,-10),B (-2,-1),C(3,4),
(1)求边AD和CD所在的直线方程;
(2)数列{an}的前项和为Sn,点(an,Sn)在直线CD上,求证{an}为等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,c<0且a,b,c这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则$\frac{p}{{b}^{2}}$$+\frac{q}{a}$-2c的最小值等于(  )
A.9B.10C.3D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)=|x|(ax+2),当1≤x≤2时,有f(x+a)<f(x),则实数a的取值范围是($\sqrt{2}$-2,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)的定义域为R,且满足f(2)=2,f′(x)-1>0,则不等式f(x)-x>0的解集为(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}的通项为an=(-1)n(4n-3),则数列{an}的前50项和T50=(  )
A.98B.99C.100D.101

查看答案和解析>>

同步练习册答案