【题目】设
.
(Ⅰ)令
,求
的单调区间;
(Ⅱ)当
时,直线
与
的图像有两个交点
,且
,求证:
.
【答案】(I)详见解析;(II)详见解析.
【解析】
试题(I)先求得
的表达式,对
求导,以
分类讨论函数的单调区间.(II) 由(I)知,
,根据单调性可知函数
在
处取得极小值也是最小值.构造函数
,利用导数求得
,即有
,根据单调性有
.
试题解析:
解:(Ⅰ)由
,
可得
,
则
.
当
时,
时,
,函数
单调递增;
当
时,
时,
,函数
单调递增;
时,
,函数
单调递减;
所以,当
时,函数
单调递增区间为
;当
时,函数
单调递增区间为
,单调递减区间为
.
(Ⅱ)由(Ⅰ)知,
.
当
时,
是增函数,且当
时,
,
单调递减;
当
时,
,
单调递增.
所以
在
处取得极小值,且
,
所以
.
![]()
.
令
,则
,
于是
在(0,1)上单调递减,故
,
由此得
即
.
因为
,
在
单调递增,
所以
即
.
科目:高中数学 来源: 题型:
【题目】如图所示,在棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,PA=AD=DC=2,AB=4且AB∥CD,∠BAD=90°.
(1)求证:BC⊥PC;
(2)求PB与平面PAC所成角的正弦值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了打好脱贫攻坚战,某贫困县农科院针对玉米种植情况进行调研,力争有效的改良玉米品种,为农民提供技术支.现对已选出的一组玉米的茎高进行统计,获得茎叶图如右图(单位:厘米),设茎高大于或等于180厘米的玉米为高茎玉米,否则为矮茎玉米.
![]()
(1)完成
列联表,并判断是否可以在犯错误的概率不超过1%的前提下,认为抗倒伏与玉米矮茎有关?
(2)①按照分层抽样的方式,在上述样本中,从易倒伏和抗倒伏两组中抽取9株玉米,设取出的易倒伏矮茎玉米株数为
,求
的分布列(概率用组合数算式表示);
②若将频率视为概率,从抗倒伏的玉米试验田中再随机抽取出50株,求取出的高茎玉米株数的数学期望和方差.
![]()
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
为坐标原点,圆
,定点
,点
是圆
上一动点,线段
的垂直平分线交圆
的半径
于点
,点
的轨迹为
.
(1)求曲线
的方程;
(2)已知点
是曲线
上但不在坐标轴上的任意一点,曲线
与
轴的焦点分别为
,直线
和
分别与
轴相交于
两点,请问线段长之积
是否为定值?如果还请求出定值,如果不是请说明理由;
(3)在(2)的条件下,若点
坐标为(-1,0),设过点
的直线
与
相交于
两点,求
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个生产公司投资A生产线500万元,每万元可创造利润
万元,该公司通过引进先进技术,在生产线A投资减少了x万元,且每万元的利润提高了
;若将少用的x万元全部投入B生产线,每万元创造的利润为
万元,其中
.
若技术改进后A生产线的利润不低于原来A生产线的利润,求x的取值范围;
若生产线B的利润始终不高于技术改进后生产线A的利润,求a的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设
(e为自然对数的底数),
.
(I)记
.
(i)讨论函数
单调性;
(ii)证明当
时,
恒成立
(II)令
,设函数G(x)有两个零点,求参数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修
:坐标系与参数方程
在直角坐标系
中,曲线
的参数方程为
(
为参数),以坐标原点为极点,以
轴的正半轴为极轴,建立极坐标系.曲线
的极坐标方程为
.
(1)写出
的普通方程和
的直角坐标方程;
(2)设点
在
上,点
在
上,求
的最小值及此时点
的直角坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场在“五一”促销活动中,为了了解消费额在5千元以下(含5千元)的顾客的消费分布情况,从这些顾客中随机抽取了100位顾客的消费数据(单位:千元),按
,
,
,
,
分成5组,制成了如图所示的频率分布直方图现采用分层抽样的方法从
和
两组顾客中抽取4人进行满意度调查,再从这4人中随机抽取2人作为幸运顾客,求所抽取的2位幸运顾客都来自
组的概率.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com