精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足b2+c2=a2+
6
5
bc
AB
AC
=3

(1)求△ABC的面积;       
(2)若c=1,求cos(B+
π
6
)
的值.
(本题满分14分)
(1)∵b2+c2=a2+
6
5
bc
,∴b2+c2-a2=
6
5
bc
cosA=
b2+c2-a2
2bc
=
3
5
-----------(2分)
又A∈(0,π),∴sinA=
1-cos2A
=
4
5
,---------------------------------(3分)
AB
AC
=|
AB
|•|
AC
|•cosA=
3
5
bc=3
,所以bc=5,-------------------(5分)
所以△ABC的面积为:
1
2
bcsinA=
1
2
×5×
4
5
=2
-----------------------------(7分)
(2)由(1)知bc=5,而c=1,所以b=5--------------------------------------(8分)
所以a=
b2+c2-2bccosA
=
25+1-2×3
=2
5
---------------------------(9分)
cosB=
a2+c2-b2
2ac
=-
5
5
sinB=
2
5
5
---------------------------------(11分)
cos(B+
π
6
)=
3
2
cosB-
1
2
sinB=
3
2
•(-
5
5
)-
1
2
2
5
5
=-
15
+2
5
10
-----------(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案