精英家教网 > 高中数学 > 题目详情

(1)
(2)求值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)  已知函数f(x)=
(1)作出函数的图像简图,并指出函数的单调区间;
(2)若f(2-a2)>f(a),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分) 如图,有一块矩形空地,要在这块空地上辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=>2),BC=2,且AE=AH=CF=CG,
设AE=,绿地面积为.
(1)写出关于的函数关系式,并指出这个函数的定义域;
(2)当AE为何值时,绿地面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.已知函数 是奇函数.
(1)求实数的值;
(2)若函数在区间上单调递增,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图,建立平面直角坐标系轴在地平面上,轴垂直于地
平面,单位长度为1千米,某炮位于坐标原点.已知炮弹发射后的轨迹在方程表示的曲线上,其中与发射方向有关,炮的射程是指炮弹落地点的横坐标.
(1)求炮的最大射程;
(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标不超过多少时,炮弹可以击中它?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为奇函数,为常数。
(I)求的值;
(II)证明在区间内单调递增;
(III)若对于区间上的每一个的值,不等式恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)设函数是定义在上的减函数,并且满足
(1)求,,的值,(2)如果,求x的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某品牌电视生产厂家有A、B两种型号的电视机参加了家电下乡活动,若厂家A、B对两种型号的电视机的投放金额分别为p、q万元,农民购买电视机获得的补贴分别为p、lnq万元,已知A、B两种型号的电视机的投放总额为10万元,且A、B两种型号的电视机的投放金额均不低于1万元,请你制定一个投放方案,使得在这次活动中农民得到的补贴最多,并求出最大值(精确到0.1,参考数据:).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1)若且对任意实数均有成立,求表达式;
(2)在(1)的条件下,当时,是单调函数,求实数的取值范围。

查看答案和解析>>

同步练习册答案