精英家教网 > 高中数学 > 题目详情

(本小题满分12分)  已知函数f(x)=
(1)作出函数的图像简图,并指出函数的单调区间;
(2)若f(2-a2)>f(a),求实数a的取值范围.

(1) f(x)在(-∞,+∞)上是单调递增函数;(2)-2<a<1.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)设函数,,
(Ⅰ)若,求取值范围;
(Ⅱ)求的最值,并给出函数取最值时对应的x的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,对任意x∈R,有f(x+T)="T" f(x)成立.
(Ⅰ)函数f(x)=" x" 是否属于集合M?说明理由;
(Ⅱ)设函数f(x)=ax(a>0,且a≠1)的图象与y=x的图象有公共点,证明:f(x)=ax∈M;
(Ⅲ)若函数f(x)=sinkx∈M ,求实数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知26辆货车以相同速度v由A地驶向400千米处的B地,每两辆货车间距离为d千米,现已知d与v的平方成正比,且当v=20(千米/时)时,d=1(千米).
(1)写出d与v的函数关系;
(2)若不计货车的长度,则26辆货车都到达B地最少需要多少小时?此时货车速度是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
某风景区有40辆自行车供游客租赁使用,管理这些自行车的费用是每日72元。根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超出6元,则每超过1元,租不出的自行车就增加3辆。为了便于结算,每辆自行车的日租金(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用(元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得)。
(1)求函数的解析式及其定义域;
(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂需要围建一个面积为平方米的矩形堆料场,一边可以利用原有的墙壁,其他三边需要砌新的墙壁,问堆料场的长和宽各为多少时,才能使砌墙所用的材料最省?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知二次函数的最小值为
⑴ 求函数的解析式;
⑵ 设,若上是减函数,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)
(2)求值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算:
           (2)

查看答案和解析>>

同步练习册答案