精英家教网 > 高中数学 > 题目详情

.已知函数 是奇函数.
(1)求实数的值;
(2)若函数在区间上单调递增,求实数的取值范围.

(1)。(2)∴

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知26辆货车以相同速度v由A地驶向400千米处的B地,每两辆货车间距离为d千米,现已知d与v的平方成正比,且当v=20(千米/时)时,d=1(千米).
(1)写出d与v的函数关系;
(2)若不计货车的长度,则26辆货车都到达B地最少需要多少小时?此时货车速度是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知二次函数的最小值为
⑴ 求函数的解析式;
⑵ 设,若上是减函数,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知函数的图象经过点,记
(1)求数列的通项公式;
(2)设,若,求的最小值;
(3)求使不等式对一切均成立的最大实数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
某漁业公司年初用98万元购买一艘捕魚船,第一年各种支出费用12万元,以后每年都增加
4万元,每年捕魚收益50万元.
(1)该公司第几年开始获利?
(2)若干年后,有两种处理方案:
①年平均获利最大时,以26万元出售该渔船;
②总纯收入获利最大时,以8万元出售渔船.
问哪种处理方案最合算?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;(2)若f(x)在区间[2a,a+1]上不单调,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)
(2)求值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.计算(1) (2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某公司生产陶瓷,根据历年的情况可知,生产陶瓷每天的固定成本为14000元,每生产一件产品,成本增加210元.已知该产品的日销售量与产量之间的关系式为
,每件产品的售价与产量之间的关系式为

(Ⅰ)写出该陶瓷厂的日销售利润与产量之间的关系式;
(Ⅱ)若要使得日销售利润最大,每天该生产多少件产品,并求出最大利润.

查看答案和解析>>

同步练习册答案