精英家教网 > 高中数学 > 题目详情
13.复数z满足z(4+i)=3+i,则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 把已知等式变形,利用复数代数形式的乘除运算化简,求出z的坐标得答案.

解答 解:由z(4+i)=3+i,得
$z=\frac{3+i}{4+i}=\frac{(3+i)(4-i)}{(4+i)(4-i)}=\frac{13+i}{17}=\frac{13}{17}+\frac{1}{17}i$,
∴复数z在复平面内对应的点的坐标为($\frac{13}{17},\frac{1}{17}$),位于第一象限.
故选:A.

点评 本题考查复数的代数表示法及其几何意义,是基础题的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.函数$y=sin({\frac{π}{6}-x})$,$x∈[{0,\frac{3π}{2}}]$的单调递减区间是$[{0,\frac{2}{3}π}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.对于实数a>0,“$\frac{1}{x}$<a”是“x>$\frac{1}{a}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,边长为2的正方形ABFC和高为2的直角梯形ADEF所在的平面互相垂直,AF∩BC=O,DE=$\sqrt{2}$,ED∥AF且∠DAF=90°
(1)求证:DE⊥平面BCE
(2)过O作OH⊥平面BEF,垂足为H,求二面角H-AE-O的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=mlnx+(m-1)x(m∈R).
(Ⅰ)当m=3时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若f(x)存在最大值M,且M>0,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知圆O:x2+y2=1,点P为直线x-2y-3=0上一动点,过点P向圆O引两条切线PA,PB,A、B为切点,则直线AB经过定点(  )
A.(2,0)B.(3,0)C.($\frac{1}{2}$,-1)D.($\frac{1}{3}$,-$\frac{2}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知k∈R,点P(a,b)是直线x+y=2k与圆x2+y2=k2-2k+3的公共点,则ab的最大值为(  )
A.15B.9C.1D.-$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知f(x)是定义在(0,+∞)上的单调函数,且?x∈(0,+∞),f[f(x)-lnx]=e+1,设a=f(($\frac{1}{2}$)${\;}^{\frac{1}{3}}$),b=f(($\frac{1}{3}$)${\;}^{\frac{1}{2}}$),c=f(log2π),则a,b,c的大小关系是c>a>b(用“>”号连接表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如表示意某科技公司2012~2016年年利润y(单位:十万元)与年份代号x之间的关系,如果该公司盈利变化规律保持不变,则第n年(以2012年为第1年)年利润的预报值是y=2n2-n.(直接写出代数式即可,不必附加单位)
年份20122013201420152016
年份代号x12345
年利润/十万元16152845

查看答案和解析>>

同步练习册答案