精英家教网 > 高中数学 > 题目详情
已知定义域为R的函数y=f(x-1)是奇函数,y=g(x)是y=f(x)的反函数,若x1+x2=0,则g(x1)+g(x2)=
-2
-2
分析:由已知中函数y=f(x-1)是定义在R上的奇函数,结合奇函数图象的对称性及函数图象的平移变换法则,我们可以求出函数y=f(x)的图象的对称中心,进而根据函数y=g(x)的图象与函数y=f(x)的图象关于直线x-y=0对称,求出g(x1)+g(x2)的值.
解答:解:由题意知
∵函数y=f(x-1)是定义在R上的奇函数
其图象关于原点对称
∴函数y=f(x)的图象,由函数y=f(x-1)的图象向左平移一个单位得到
∴函数y=f(x)的图象关于(-1,0)点对称
又∵y=g(x)是y=f(x)的反函数
∴函数y=g(x)的图象与函数y=f(x)的图象关于直线x-y=0对称
故函数y=g(x)的图象关于(0,-1)点中心对称图形
∴点(x1,g(x1))和点(x2,g(x2))是关于点(0,-1)中心对称
x1+x2
2
=0,
g(x1)+g(x2)
2
=-1

∵x1+x2=0
∴g(x1)+g(x2)=-2
故答案为:-2
点评:本题考查的知识点是奇偶函数图象的对称性,函数图象的平移变换及反函数的图象关系,其中熟练掌握函数图象的各种变换法则,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•石家庄二模)已知定义域为R的函数f(x)在(1,+∞)上为减函数,且函数y=f(x+1)为偶函数,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(x)f(x+2)=5,若f(2)=3,则f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)在(4,+∞)上为减函数,且函数y=f(x)的对称轴为x=4,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+a2x+1
是奇函数
(1)求a值;
(2)判断并证明该函数在定义域R上的单调性;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围;
(4)设关于x的函数F(x)=f(4x-b)+f(-2x+1)有零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(4-x)=-f(x),当x<2时,f(x)单调递减,如果x1+x2>4且(x1-2)(x2-2)<0,则f(x1)+f(x2)的值(  )

查看答案和解析>>

同步练习册答案