精英家教网 > 高中数学 > 题目详情
设m∈R且二次函数f(x)=x2-x+a(a>0)满足f(m)<0,试判断f(1-m)和f(1+m)的符号.
考点:二次函数的性质
专题:函数的性质及应用
分析:根据已知中的函数解析式可得f(x)<0的解集为(h,k),则h+k=1且(h,k)?(0,1),进而可分析1-m和1+m的位置,进而分析出f(1-m)和f(1+m)的符号.
解答: 解:∵f(x)=x2-x+a的对称轴为x=
1
2

设f(x)<0的解集为(h,k),
则h+k=1,
而f(m)<0,
且f(1)>0,则f(0)>0,
∴m∈(h,k)?(0,1),
∴1-m∈(h,k)?(0,1),1+m∈(1,2),
∴f(1-m)<0,f(1+m)>0.
点评:本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知平面直角坐标系内的两个向量
a
=(1,2),
b
=(m,3m-2),且平面内的任一向量
c
都可以唯一表示成
c
=λ
a
-μ
b
(λ,μ为实数),则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z1=2+i,z2=a-i,z1•z2是实数,则实数a=(  )
A、2B、3C、4D、5

查看答案和解析>>

科目:高中数学 来源: 题型:

设双曲线C:
x2
a2
-
y2
3
=1(a>0)的一个顶点坐标为(2,0),则双曲线C的方程是(  )
A、
x2
16
-
y2
3
=1
B、
x2
12
-
y2
3
=1
C、
x2
8
-
y2
3
=1
D、
x2
4
-
y2
3
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

年龄在60岁(含60岁)以上的人称为老龄人,某地区老龄人共有35万,随机调查了该地区700名老龄人的健康状况,结果如下表:
健康指数 2 1 0 -1
60岁至79岁的人数 250 260 65 25
80岁及以上的人数 20 45 20 15
其中健康指数的含义是:2表示“健康”,1表示“基本健康”,0表示“不健康,但生活能够自理”,-1表示“生活不能自理”.
(Ⅰ)估计该地区80岁以下老龄人生活能够自理的概率.
(Ⅱ)若一个地区老龄人健康指数的平均值不小于1.2,则该地区可被评为“老龄健康地区”.请写出该地区老龄人健康指数X分布列,并判断该地区能否被评为“老龄健康地区”.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)的定义域为R,当x<0时f(x)>1,且对任意的实数x,y∈R,有f(x+y)=f(x)f(y).
(1)求f(0),判断并证明函数f(x)的单调性;
(2)数列{an}满足a1=f(0),且f(an+1)=
1
f(-2-an)
(n∈N*)

①求{an}的通项公式;
②当a>1时,不等式
1
an+1
+
1
an+2
+…+
1
a2n
12
35
(loga+1x-logax+1)对不小于2的正整数恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【理科】已知双曲线的中心在坐标原点O,一条准线方程为x=
3
2
,且与椭圆
x2
25
+
y2
13
=1
有共同的焦点.
(1)求此双曲线的方程;
(2)设直线:y=kx+3与双曲线交于A、B两点,试问:是否存在实数k,使得以弦AB为直径的圆过点O?若存在,求出k的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),若存在x0∈R,使得f(x0)=x0成立,则称x0为f(x)的不动点.已知二次函数f(x)=ax2+bx+c(a>0),满足
f(0)≥1
f(1+sinα)≤1(α∈R)
,且f(x)有两个不动点x1,x2,记函数f(x)的对称轴为x=x0,求证:如果x1<2<x2<4,那么x0>-1.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,点D在边BC上,且DC=2BD,AB:AD:AC=3:k:1,则实数k的取值范围为
 

查看答案和解析>>

同步练习册答案