精英家教网 > 高中数学 > 题目详情
9.定义:分子为1且分母为正整数的分数为单位分数,我们可以把1拆为若干个不同的单位分数之和.如:1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,以此类推,可得:1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,其中a<b,a,b∈N*,设1≤x≤a,1≤y≤b,则$\frac{x+y+4}{x+2}$的最小值为(  )
A.$\frac{25}{3}$B.$\frac{23}{7}$C.$\frac{8}{7}$D.$\frac{6}{5}$

分析 根据1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,结合裂项相消法,可得 $\frac{1}{a}$+$\frac{1}{b}$=$\frac{a+b}{ab}$=$\frac{33}{260}$,解得a,b值,可得答案.

解答 解:∵2=1×2,
6=2×3,
30=5×6,
42=6×7,
56=7×8,
72=8×9,
90=9×10,
110=10×11,
132=11×12,
∵1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,
∴$\frac{1}{a}$+$\frac{1}{b}$=$\frac{a+b}{ab}$=$\frac{33}{260}$,∴a=13,b=20,
则$\frac{x+y+4}{x+2}$=1+$\frac{y+2}{x+2}$,
∵1≤x≤13,1≤y≤20,
∴y=1,x=13时,$\frac{x+y+4}{x+2}$的最小值为$\frac{6}{5}$,
故选:D.

点评 本题考查归纳推理,考查学生的计算能力,确定a,b的值是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设命题p:直线x-y+1=0的倾斜角为135°;命题q:平面直角坐标系内的三点A(-1,-3),B(1,1),C(2,2)共线.则下列判断正确的是(  )
A.¬p为假B.¬p∧¬q为真C.p∨q为真D.q为真

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知直线l:kx+y+1=0(k∈R),则原点到这条直线距离的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数$f(x)=\left\{\begin{array}{l}x(x+4),x≥0\\ x(x-4),x<0\end{array}\right.$,则f[f(-1)]的值是(  )
A.40B.42C.44D.45

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设实数a∈(0,10)且a≠1,则函数f(x)=logax在(0,+∞)内为增函数且$g(x)=\frac{a-3}{x}$在(0,+∞)内也为增函数的概率是(  )
A.$\frac{1}{10}$B.$\frac{1}{5}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数f(x)=sinxcosx的值域是[-$\frac{1}{2}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.某校高三共有男生600名,从所有高三男生中随机抽取40名测量身高(单位:cm)作为样本,得到频率分布表与频率分布直方图(部分)如表:
 分组频数 频率 
[150,160) 2 
[160,170) n1 f1
[170,180) 14 
[180,190) n2 f2
[190,200] 6 
(Ⅰ)求n1、n2、f1、f2
(Ⅱ)试估计身高不低于180cm的该校高三男生人数,并说明理由;
(Ⅲ)从抽取的身高不低于185cm的男生中任取2名参加选拔性测试,已知至少有一个身高不低于190cm的学生的概率为$\frac{9}{11}$,求抽取身高不低于185cm的男生人数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设f(x)=$\frac{1}{3}$x3+3x2+ax,若g(x)=$\frac{1}{{4}^{x}}$,对任意x1∈[$\frac{1}{2}$,1],存在x2∈[$\frac{1}{2}$,2],使得f′(x1)≤g(x2)成立,则实数a的取值范围为(  )
A.[-$\frac{11}{4}$,+∞)B.(-∞,-$\frac{13}{2}$]C.(-∞,-$\frac{11}{4}$]D.[-$\frac{13}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知抛物线y2=2px(p>0)的过焦点的弦为AB,且|AB|=6,xA是点A的横坐标,xB是B点的横坐标,又xA+xB=2,则p=4.

查看答案和解析>>

同步练习册答案