精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和为Sn,已知Sn=2an-2n+1(n∈N*).
(1)设bn=
an
2n
,求证:数列{bn}是等差数列:
(2)设数列{cn}满足cn=
1
log2(
an
n+1
) +1
(n∈N*),Tn=c1c2+c2c3+c3c4+…cncn+1,若对一切n∈N*不等式2mTn>Cn恒成立,实数m的取值范围.
(1)当n=1时:S1=a1=2a1-21|1,解得a1=4
当n≥2时
由Sn=2an-2n+1 …①
且Sn-1=2an-1-2n …②
①-②得:an=2an-2an-1-2n
有:an=2an-1+2n
an
2n
-
an-1
2n-1
=1

∴bn-bn-1=1,
b1=
a1
2
=2

故数列{bn}是以2为首项,以1为公差的等差数列.
(2)由(1)得:bn=1+2(n-1)=2n-1,
即an=(n+1)•2n
Cn=
1
n+1

CnCn+1=
1
n+1
1
n+2
=
1
n+1
-
1
n+2

Tn=
1
2
-
1
n+2

由2mTn>cn,得:2m(
1
2
-
1
n+2
)>
1
n+1

m>
n+2
n(n+1)

又令f(n)=
n+2
n(n+1)

f(n+1)-f(n)=
n+3
(n+1)(n+2)
-
n+2
n(n+1)

=
1
n+1
(
n+3
n+2
-
n+2
n
)<0

故f(n)在n∈N*时单调递减,
f(n)<f(1)=
3
2

得m>
3
2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn,且Sn=3n+1.
(1)求数列{an}的通项公式;
(2)设bn=an(2n-1),求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
y≥0
nx+y≤4n
所表示的平面区域为Dn,若Dn内的整点(整点即横坐标和纵坐标均为整数的点)个数为an(n∈N*
(1)写出an+1与an的关系(只需给出结果,不需要过程),
(2)求数列{an}的通项公式;
(3)设数列an的前n项和为SnTn=
Sn
5•2n
,若对一切的正整数n,总有Tn≤m成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)设数列{an}的前n项和Sn=2n-1,则
S4
a3
的值为(  )

查看答案和解析>>

同步练习册答案