精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2+2x+b(b∈R).
(Ⅰ)若函数f(x)的值域为[0,+∞),若关于x的不等式f(x)<c(c>0)的解集为(k,k+6)(k∈R),求c的值;
(Ⅱ)当b=0时,m为常数,且0<m<1,1-m≤t≤m+1,求
f(t)-t2-tf(t)-2t+1
的取值范围.
分析:(Ⅰ)根据函数f(x)的值域为[0,+∞),求出b的值,然后根据不等式的解集建立方程关系,求c的值;
(Ⅱ)将条件进行化简,利用导数研究函数的最值即可.
解答:解:(Ⅰ)由值域为[0,+∞),当x2+2x+b=0时有△=4-4b=0,即b=1.
则f(x)=x2+2x+1=(x+1)2
由已知f(x)=(x+1)2<c
解得-
c
<x+1<
c
-
c
-1<x<
c
-1

∵不等式f(x)<c的解集为(k,k+6),
(
c
-1)-(-
c
-1)=2
c
=6

解得c=9.
(Ⅱ)当b=0时,f(x)=x2+2x,
f(t)-t2-t
f(t)-2t+1
=
t
t2+1

∵0<m<1,1-m≤t≤m+1,
∴0<1-m≤t≤m+1<2.
g(t)=
t
t2+1
,则g′(t)=
1-t2
(t2+1)2

当0<t<1时,g'(t)>0,g(t)单调增,
当1<t<2时,g'(t)<0,g(t)单调减,
∴当t=1时,g(t)取最大值,g(1)=
1
2

g(1-m)-g(1+m)=
1-m
(1-m)2+1
-
1+m
(1+m)2+1
=
-2m3
[(1-m)2+1][(1+m)2+1]
<0

∴g(1-m)<g(1+m).
g(t)=
t
t2+1
的范围为[
1-m
(1-m)2+1
1
2
]
点评:本题主要考查不等式的应用,以及利用导数研究函数的性质,综合性较强,考查学生的计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案