精英家教网 > 高中数学 > 题目详情

【题目】为增进市民的环保意识,某市有关部门面向全体市民进行了一次环保知识的微信问卷测试活动,每位市民仅有一次参与问卷测试机会.通过抽样,得到参与问卷测试的1000人的得分数据,制成频率分布直方图如图所示.

(1)估计成绩得分落在[86,100]中的概率.

(2)设这1000人得分的样本平均值为

(i)求(同一组数据用该区间的中点值作代表)

(ii)有关部门为参与此次活动的市民赠送20元或10元的随机话费,每次获赠20元或10元的随机话费的概率分别为得分不低于的可获赠2次随机话费,得分低于的可获赠1次随机话费.求一位市民参与这次活动获赠话费的平均估计值

【答案】(1).

(2) (i)65. (ii).

【解析】 分析:(1)直接根据频率分布直方图估计成绩得分落在[86,100]中的概率.(2)(i)利用频率分布直方图的平均数公式求. (ii)先分析得到随机变量可取10,20,30,40,再求其概率,最后得到分布列和话费的平均估计值.

详解:(1)成绩得分落在[86,100]中的概率为

(2)(i)500件产品质量指标值的样本平均数为

(ii)设得分不低于的概率为

随机变量可取10,20,30,40.

的分布列为

话费的平均估计值为

ξ

x1

x2

xn

P

p1

p2

pn

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】1)某食品的保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系自然对数的底数,kb为常数),若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,求该食品在33℃的保鲜时间.

2)某药厂生产一种口服液,按药品标准要求其杂质含量不能超过0.01%,若初始时含杂质0.2%,每次过滤可使杂质含量减少三分之一,问至少应过滤几次才能使得这种液体达到要求?(已知

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校有四件作品参加航模类作品比赛.已知这四件作品中恰有两件获奖,在结果揭晓前,甲、乙、丙、丁四位同学对这四件参赛作品的获奖情况预测如下.

甲说:“同时获奖.”

乙说:“不可能同时获奖.”

丙说:“获奖.”

丁说:“至少一件获奖”

如果以上四位同学中有且只有两位同学的预测是正确的,则获奖的作品是( )

A. 作品与作品B. 作品与作品C. 作品与作品D. 作品与作品

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)求函数的单调减区间;

2)若函数在区间上的极大值为8,求在区间上的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求的单调区间;

(2)当时,恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数fx)=lnax2+x+6).

1)若a=﹣1,求fx)的定义域,并讨论fx)的单调性;

2)若函数fx)的定义域为R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体的棱长为4,动点EF在棱上,动点PQ分别在棱ADCD上。若大于零),则四面体PEFQ的体积

A.都有关B.m有关,与无关

C.p有关,与无关D.π有关,与无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数gx)=fx)﹣3

1)判断并证明函数gx)的奇偶性;

2)判断并证明函数gx)在(1+∞)上的单调性;

3)若fm22m+7f2m24m+4)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数.

(1)求函数的单调区间;

(2)若函数上存在最大值0,求函数上的最大值;

(3)求证:当时,.

查看答案和解析>>

同步练习册答案