精英家教网 > 高中数学 > 题目详情
在平行四边形ABCD中,∠A=
π
3
,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足
|
BM
|
|
BC
|
=
|
CN
|
|
CD
|
,求
AM
AN
的取值范围.
考点:平面向量数量积的运算
专题:平面向量及应用
分析:画出图形,建立直角坐标系,利用比例关系,求出M,N的坐标,然后通过二次函数求出数量积的范围.
解答: 解:建立如图所示的直角坐标系,则B(2,0),A(0,0),
D(
1
2
3
2
),设
|
BM
|
|
BC
|
=
|
CN
|
|
CD
|
=λ,λ∈[0,1],
M(2+
λ
2
3
λ
2
),N(
5
2
-2λ,
3
2
),
所以
AM
AN
=(2+
λ
2
3
λ
2
)•(
5
2
-2λ
3
2
)=-λ2-2λ+5,
因为λ∈[0,1],二次函数的对称轴为:λ=-1,
所以λ∈[0,1]时,-λ2-2λ+5∈[2,5].
点评:本题考查向量的综合应用,平面向量的坐标表示以及数量积的应用,二次函数的最值问题,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合M={x|x≤
2
},N={1,2,3,4},则M∩N的运算结果为(  )
A、{1}
B、{3,4}
C、{2,3,4}
D、{1,2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A1B1C1中,点M是BC的中点,AB=2,BB1=
3

(Ⅰ)求直线B1M与平面AB1C1所成角的正弦;
(Ⅱ)求异面直线B1M与AC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为(-1,1),求g(x)=f(a+x)+f(a-x)的定义域(-
1
2
<a<
1
2
).

查看答案和解析>>

科目:高中数学 来源: 题型:

两颗正四面体的玩具,其四个面上分别标有数字1,2,3,4,下面做投掷这两颗正四面体玩具的实验:用(x,y)表示结果,其中x表示第1颗正四面体玩具出现的点数,y表示第2颗正四面体出现的点数.
(1)求事件“出现点数之和小于5的概率;
(2)求事件“出现点数相等”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知2+tan(
π
4
+α)=0,求下列代数式的值.
(Ⅰ)
4sinα-2cosα
5cosα+3sinα
;    
(Ⅱ)cos2(π+α)+cos(
2
-2α).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+x,试作出f(|x|)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简:
(1)
sin3(-α)cos(5π+α)tan(2π+α)
cos3(-α-2π)sin(-α-3π)tan3(α-4π)

(2)
1-2sin10°cos10°
sin170°-
1-sin2170°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个二次函数y=f(x)的抛物线先向左平移2个单位长度,再向下平移2个单位长度,此时抛物线过点(-1,-1),对称轴为x=-2,且在x轴上截得的线段长为2
2
,求f(x)的表达式.

查看答案和解析>>

同步练习册答案