精英家教网 > 高中数学 > 题目详情

一个袋中装有大小相同的黑球、白球和红球共10个.已知从袋中任意摸出1个球,得到黑球的概率是数学公式;从袋中任意摸出2个球,至少得到1个白球的概率是数学公式.从袋中任意摸出2个球,记得到白球的个数为ξ,则随机变量ξ的数学期望Eξ=________.

1
分析:由条件从袋中任意摸出1个球,得到黑球的概率是可得到黑球的个数;利用“从袋中任意摸出2个球,至少得到1个白球的”的对立事件“从袋中任意摸出2个球都不是白球”即可得出;由题意白球的个数随机变量ξ的取值为0,1,2,利用古典概型的概率计算公式和数学期望的计算公式即可得出Eξ.
解答:∵从袋中任意摸出1个球,得到黑球的概率是,∴黑球的个数为=4.
设白球的个数为x个,则红球的个数为6-x.设“从袋中任意摸出2个球,至少得到1个白球”为事件A,则其对立事件为“从袋中任意摸出2个球都不是白球”,
由题意得P(A)=1-=1-=.解得x=5.
可知白球的个数为5个,则红球的个数为1个.
由题意白球的个数随机变量ξ的取值为0,1,2.
∴P(ξ=0)==,P(ξ=1)==,P(ξ=2)==
随机变量ξ的分布列见右图
∴Eξ==1.
故答案为1.
点评:正确理解概率的意义、互为对立事件的概率之间的关系、古典概型的概率计算公式和数学期望计算公式是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个袋中装有大小相同的5个球,现将这5个球分别编号为1,2,3,4,5.
(1)从袋中取出两个球,每次只取出一个球,并且取出的球不放回.求取出的两个球上编号之积为奇数的概率;
(2)若在袋中再放入其他5个相同的球,测量球的弹性,经检测这10个的球的弹性得分如下:8.7,9.1,8.3,9.6,9.4,8.7,9.7,9.3,9.2,8.0,把这10个球的得分看成一个总体,从中任取一个数,求该数与总体平均数之差的绝对值不超过0.5的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个袋中装有大小相同的球10个,其中红球8个,黑球2个,现从袋中有放回地取球,每次随机取1个. 求:
(1)连续取两次都是红球的概率;
(2)如果取出黑球,则取球终止,否则继续取球,直到取出黑球,但取球次数最多不超过4次,求取到黑球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

一个袋中装有大小相同的球10个,其中红球8个,黑球2个,现从袋中有放回地取球,每次随机取1个. 求:
(Ⅰ)连续取两次都是红球的概率;
(Ⅱ)如果取出黑球,则取球终止,否则继续取球,直到取出黑球,但取球次数最多不超过4次,求取球次数ξ的概率分布列及期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•闸北区二模)一个袋中装有大小相同的黑球、白球和红球共10个.已知从袋中任意摸出1个球,得到黑球的概率是
2
5
;从袋中任意摸出2个球,至少得到1个白球的概率是
7
9
.从袋中任意摸出2个球,记得到白球的个数为ξ,则随机变量ξ的数学期望Eξ=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•嘉兴二模)一个袋中装有大小相同的黑球和白球共9个,从中任取3个球,记随机变量X为取出3球中白球的个数,已知P(X=3)=
521

(Ⅰ)求袋中白球的个数;
(Ⅱ)求随机变量X的分布列及其数学期望.

查看答案和解析>>

同步练习册答案