精英家教网 > 高中数学 > 题目详情

函数y=2x+a的反函数是y=bx-1,则a+b=________.


分析:本题考查对互为反函数的两个函数关系的理解,可有两种方法,其一,求出y=2x+a的反函数令其与y=bx-1的对应系数相等获得,
其二由互为反函数图象上的点之间的对称关系,取特殊点求解.
解答:法一:函数y=2x+a的反函数为y=x-a,与y=bx-1对照可得a=2,b=
法二:在y=bx-1上取点(0,-1),得点(-1,0)在y=2x+a上,
故得a=2;又y=2x+2上有点(0,2),则点(2,0)在y=bx-1
由此可得a=2,b=
∴a+b=
故答案为:
点评:本题主要考查反函数的概念及其对称性的应用.直接求反函数也可,较为简单.该题的易错点:运算错误导致填写其他错误答案.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

由函数y=f(x)确定数列{an},an=f(n),若函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若函数f(x)=2
x
确定数列{an}的反数列为{bn},求{bn}的通项公式;
(2)对(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
对任意的正整数n恒成立,求实数a的取值范围;
(3)设cn=
1+(-1)λ
2
3n+
1-(-1)λ
2
•(2n-1)(λ为正整数)
,若数列{cn}的反数列为{dn},{cn}与{dn}的公共项组成的数列为{tn},求数列{tn}前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•浦东新区一模)由函数y=f(x)确定数列{an},an=f(n),若函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若函数f(x)=2
x
确定数列{an}的反数列为{bn},求bn
(2)设cn=3n,数列{cn}与其反数列{dn}的公共项组成的数列为{tn}
(公共项tk=cp=dq,k、p、q为正整数).求数列{tn}前10项和S10
(3)对(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
对任意的正整数n恒成立,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)存在反函数y=f-1(x),由函数y=f(x)确定数列{an},an=f(n),由函数y=f-1(x)确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若数列{bn}是函数f(x)=
x+1
2
确定数列{an}的反数列,试求数列{bn}的前n项和Sn
(2)若函数f(x)=2
x
确定数列{cn}的反数列为{dn},求{dn}的通项公式;
(3)对(2)题中的{dn},不等式
1
dn+1
+
1
dn+2
+…+
1
d2n
1
2
log(1-2a)对任意的正整数n恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:浦东新区一模 题型:解答题

由函数y=f(x)确定数列{an},an=f(n),若函数y=f(x)的反函数y=f-1(x)能确定数列{bn},bn=f-1(n),则称数列{bn}是数列{an}的“反数列”.
(1)若函数f(x)=2
x
确定数列{an}的反数列为{bn},求{bn}的通项公式;
(2)对(1)中{bn},不等式
1
bn+1
+
1
bn+2
+…+
1
b2n
1
2
loga(1-2a)
对任意的正整数n恒成立,求实数a的取值范围;
(3)设cn=
1+(-1)λ
2
3n+
1-(-1)λ
2
•(2n-1)(λ为正整数)
,若数列{cn}的反数列为{dn},{cn}与{dn}的公共项组成的数列为{tn},求数列{tn}前n项和Sn

查看答案和解析>>

同步练习册答案