精英家教网 > 高中数学 > 题目详情
三棱柱ABC-A1B1C1中,侧棱与底面垂直,∠ABC=90°,AB=BC=BB1=2,M,N分别是A1B1,AC1的中点.
(1)求证:MN⊥平面ABC1
(2)求三棱锥M-ABC1的体积.
考点:直线与平面垂直的判定,棱柱、棱锥、棱台的体积
专题:空间位置关系与距离
分析:(1)由已知得四边形BCC1B1是正方形,MN⊥BC1,MN⊥AC1.由此能证明MN⊥平面ABC1
(2)MN是三棱锥M-ABC1的高,由已知条件推导出MN=
2
S△ABC1=2
2
.由此能求出三棱锥M-ABC1的体积.
解答: (1)证明:∵三棱柱ABC-A1B1C1中,侧棱与底面垂直,
∴四边形BCC1B1是正方形.
∴BC1⊥B1C.∴MN⊥BC1
连接AM,C1M,△A1MA≌△B1MC1
∴AM=C1M,又N是AC1的中点,∴MN⊥AC1
∵BC1与AC1相交于点C1
∴MN⊥平面ABC1
(2)解:由(1)知MN是三棱锥M-ABC1的高.
在直角△MNC中,MC1=
5
,AC1=2
3
,∴MN=
2

S△ABC1=2
2

VM-ABC1=
1
3
•MN•S△ABC1
=
4
3
点评:本题考查直线与平面垂直的证明,考查三棱锥的体积的求法,解题时要认真审题,注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给出下列四个命题:
①垂直于同一直线的两条直线互相平行
②平行于同一平面的两个平面互相平行
③若l1l2互相平行,则直线l1,l2与同一平面所成的角相等
④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线
其中真命题是(  )
A、②③B、①②C、③④D、①④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列 {an}对任意正整数 n满足
an+1
an
=-1,且a1=1,则数列 {an}的前100项的和S100等于(  )
A、0B、1C、-1D、100

查看答案和解析>>

科目:高中数学 来源: 题型:

已知C1
x2
a2
+
y2
b2
=1(a>b>0,x≥0)和曲线C2:x2+y2=r2(x≥0)都经过点A(0,-1),且曲线C1所在的圆锥曲线的离心率为
6
3

(Ⅰ)求曲线C1和曲线C2的方程;
(Ⅱ)设B,C两点分别在曲线C1,C2上,且均与点A不重合,k1,k2分别为直线AB,AC的斜率,且k2=3k1
①问直线BC是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由;
②求∠BAC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E:
x2
a2
+
y2
b2
=1(a>b大于0)的离心率为
1
2
,且过点(
3
3
2
).
(Ⅰ)求椭圆E的方程;
(Ⅱ)设椭圆的左顶点为A,过椭圆右焦点F的直线l交椭圆E于B,C(异于点A)两点,问直线AB,AC的斜率之积是否为定值?若是,求出该定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(2x+
π
6
)cos2x-
1
2

(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)将函数f(x)的图象向右平移
π
8
个单位,再将图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数y=g(x)的图象,若关于x的方程g(x)-k=0在区间[0,
π
2
]上有解,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A1B1C1中,D是BC的中点,AA1=AB=2.
(Ⅰ)求证:A1C∥平面AB1D;
(Ⅱ)求点C1到平面AB1D的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+1(a>0),F(x)=
f(x) , x≥0
-f(x) , x<0
若f(-1)=0,且对任意实数x均有f(x)≥0成立.
(1)求F(x)的表达式;
(2)设函数g(x)=x+t,若函数F(x)与g(x)的图象有三个不同交点,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

画出下列函数的图象:
(1)y=-
1
x
-1
(2)y=-|-x2+2x+3|
(3)y=-|x-2|+|x+1|
(4)y=1-
1-|x|
|1-x|

查看答案和解析>>

同步练习册答案