精英家教网 > 高中数学 > 题目详情
已知二次函数f(x)=ax2+bx+1(a>0),F(x)=
f(x) , x≥0
-f(x) , x<0
若f(-1)=0,且对任意实数x均有f(x)≥0成立.
(1)求F(x)的表达式;
(2)设函数g(x)=x+t,若函数F(x)与g(x)的图象有三个不同交点,求实数t的取值范围.
考点:二次函数的性质
专题:函数的性质及应用
分析:(1)由f(-1)=0,可得a-b+1=0,b=a+1,可得f(x)=ax2+(a+1)x+1(a>0),因为对任意实数x均有f(x)≥0成立,所以
a>0
=(a+1)2-4a≤0
,据此求出a、b的值,进而求出求F(x)的表达式即可;
(2)根据函数F(x)与g(x)的图象有三个不同交点,分两种情况讨论求出实数t的取值范围即可.
解答: 解:由f(-1)=0,可得a-b+1=0,b=a+1,
所以f(x)=ax2+(a+1)x+1(a>0),
因为对任意实数x均有f(x)≥0成立,
所以
a>0
=(a+1)2-4a≤0

解得a=1,从而b=2,
所以f(x)=x2+2x+1(a>0),
F(x)=
x2+2x+1,x≥0
-x2-2x-1,x<0

(2)当x>0时,由函数F(x)与g(x)的图象,可得t>1,
当x<0时,要使函数f(x)与g(x)的图象有三个不同交点,
则方程-x2-2x-1=x+t,即x2+3x+t+1=0有两个不同负根,
△=9-4(t+1)>0
x1+x2=-3<0
x1x2=t+1>0

解得,-1<t<
5
4

综上所述,1≤t<
5
4
点评:本题主要考查了二次函数的性质的运用,考查了函数的极值与最值,考查了学生分析解决问题的能力,属于中等题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知全集U={2,3,4,5},集合A={x∈Z||x-3|<2},则集合∁UA=(  )
A、{1,2,3,4}
B、{2,3,4}
C、{1,5}
D、{5}

查看答案和解析>>

科目:高中数学 来源: 题型:

三棱柱ABC-A1B1C1中,侧棱与底面垂直,∠ABC=90°,AB=BC=BB1=2,M,N分别是A1B1,AC1的中点.
(1)求证:MN⊥平面ABC1
(2)求三棱锥M-ABC1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}和{bn}中,已知a1=
1
4
an+1
an
=
1
4
bn+2=3log
1
4
an
(n∈N*).
(1)求数列{an}和{bn}的通项公式;
(2)设cn=an•bn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

如果数列{an}中,相邻两项an和an+1是二次方程xn2+3nxn+Cn=0的两个根,当a1=2时,求{an}的通项公式和C100的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C,的对边分别为a,b,c.已知向量
m
=(2cos
A
2
,sin
A
2
),
n
=(cos
A
2
,-2sin
A
2
),
m
n
=-1.
(1)求cosA的值;
(2)若a=2
3
,求△ABC周长的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

平面内动点P(x,y)与两定点A(-2,0),B(2,0)连接的斜率之积等于-
1
4
,若点P的轨迹为曲线E,过点Q(-
6
5
,0),直线l交曲线E于M,N两点.
(1)求曲线E的方程,并证明:∠MAN是一定值;
(2)若四边形AMBN的面积为S,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知幂函数f(x)=(m-1)2x m2-4m+2在(0,+∞)上单调递增,函数g(x)=2x-k.
(Ⅰ)求m的值;
(Ⅱ)当x∈[1,2]时,记f(x),g(x)的值域分别为集合A,B,若A∪B=A,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
y 2
a x
+
x 2
b 2
=1(a>b>0)的短轴长为4,离心率为
2
2
,其一个焦点在抛物线C2:x2=2py(p>0)的准线上,过点M(0,1)的直线交C1于C、D两点,交C2于A、B两点,分别过点A、B作C2的切线,两切线交于点Q.
(Ⅰ)求C1、C2的方程;
(Ⅱ)求△QCD面积的最小值.

查看答案和解析>>

同步练习册答案