精英家教网 > 高中数学 > 题目详情
已知全集U={2,3,4,5},集合A={x∈Z||x-3|<2},则集合∁UA=(  )
A、{1,2,3,4}
B、{2,3,4}
C、{1,5}
D、{5}
考点:补集及其运算
专题:集合
分析:求出A中不等式的解集,找出解集中的整数解确定出A,根据全集U及A,求出A的补集即可.
解答: 解:∵全集U={2,3,4,5},集合A={x∈Z||x-3|<2}={x∈Z|1<x<5}={2,3,4},
∴∁UA={5}.
故选:D.
点评:此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设l为直线,α,β是两个不同的平面,下列命题中正确的是(  )
A、若l∥α,l∥β,则α∥β
B、若α⊥β,l∥α,则l⊥β
C、若l⊥α,l∥β,则α∥β
D、若l⊥α,l⊥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①垂直于同一直线的两条直线互相平行
②平行于同一平面的两个平面互相平行
③若l1l2互相平行,则直线l1,l2与同一平面所成的角相等
④若直线l1,l2是异面直线,则与l1,l2都相交的两条直线是异面直线
其中真命题是(  )
A、②③B、①②C、③④D、①④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知x>0,y>0,且x+y=4,则使不等式
1
x
+
4
y
≥m恒成立的实数m的取值范围是(  )
A、[
9
4
,+∞)
B、(-∞,
9
4
]
C、[
5
4
,+∞)
D、(-∞,
5
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

设非零向量
a
b
c
满足|
a
|=|
b
|,
c
=
a
+
b
,|
c
|=
3
|
a
|,则向量
a
b
的夹角为(  )
A、30°B、60°
C、90°D、120°

查看答案和解析>>

科目:高中数学 来源: 题型:

α、β、γ表示不同平面,m、n表示不同直线,则下列说法中可以判定α∥β的是(  )
①α⊥γ,β⊥γ;
②由α内不共线的三点作平面β的垂线,各点与垂足间线段的长度都相等;
③m∥n,m⊥α,n⊥β;
④m、n是α内两条直线,且m∥β,n∥β.
A、①②B、②C、③④D、③

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列 {an}对任意正整数 n满足
an+1
an
=-1,且a1=1,则数列 {an}的前100项的和S100等于(  )
A、0B、1C、-1D、100

查看答案和解析>>

科目:高中数学 来源: 题型:

已知C1
x2
a2
+
y2
b2
=1(a>b>0,x≥0)和曲线C2:x2+y2=r2(x≥0)都经过点A(0,-1),且曲线C1所在的圆锥曲线的离心率为
6
3

(Ⅰ)求曲线C1和曲线C2的方程;
(Ⅱ)设B,C两点分别在曲线C1,C2上,且均与点A不重合,k1,k2分别为直线AB,AC的斜率,且k2=3k1
①问直线BC是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由;
②求∠BAC的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+1(a>0),F(x)=
f(x) , x≥0
-f(x) , x<0
若f(-1)=0,且对任意实数x均有f(x)≥0成立.
(1)求F(x)的表达式;
(2)设函数g(x)=x+t,若函数F(x)与g(x)的图象有三个不同交点,求实数t的取值范围.

查看答案和解析>>

同步练习册答案