精英家教网 > 高中数学 > 题目详情
已知f (x)是定义在实数集R上的函数,且满足f(x+2)-f(x+2)f(x)-f(x)=1,f(1)=-
1
2
, f(2)=-
1
4
,则f (2006)=______.
f (x)是定义在实数集R上的函数,且满足f(x+2)-f(x+2)f(x)-f(x)=1,
f(1)=-
1
2
, f(2)=-
1
4
,将f(1),f(2)代入题目中的式子,
可以得f(3)=
1
3
,f(4)=
3
5
,…
依次算下去,得到的结果为:-
1
2
,-
1
4
1
3
3
5
,2,4,-3,-
5
3
,-
1
2
,-
1
4

所以,这个函数是以8为周期的.再用2006除以8余6,
因此,f(2006)=f(6)=4.
故答案为:4.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、已知f(x)是定义在(-∞,+∞)上的函数,m∈(-∞,+∞),请给出能使命题:“若m+1>0,f(m)+f(1)>f(-m)+f(-1)”成立的一个充分条件:
f(x)在(-∝,+∞)上单调递增(f(x)=ax+b(a>0等))

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=x3+x+1,则x<0时,f(x)的解析式为
x3+x-1
x3+x-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,f(2)=0,[xf(x)]′>0(x>0),则不等式f(x)≤0的解集是
(-∞,-2]∪[0,2]
(-∞,-2]∪[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,且x>0时,f(x)=sinx-cosx,求:
(1)f(x)在R上的解析式.
(2)当x>0时,解不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的函数,并满足f(x)f(x+2)=-1,当1<x<2时,f(x)=x3+sin
π
9
x,则f(5.5)=(  )
A、
23
8
B、-
23
8
C、
31
8
D、-
31
8

查看答案和解析>>

同步练习册答案