(本题满分16分)已知
,
且
.
(Ⅰ)当
时,求
在
处的切线方程;
(Ⅱ)当
时,设
所对应的自变量取值区间的长度为
(闭区间
的长度定义为
),试求
的最大值;
(Ⅲ)是否存在这样的
,使得当
时,
?若存在,求出
的取值范围;若不存在,请说明理由.
解: (Ⅰ)当
时,
.
因为当
时,
,
,
且
,
所以当
时,
,且
………………………………(3分)
由于
,所以
,又
,
故所求切线方程为
,
即
………………………………………………………………(5分)
(Ⅱ) 因为
,所以
,则
当
时,因为
,
,
所以由
,解得
,
从而当
时,
…………………………………………(6分)
当
时,因为
,
,
所以由
,解得
,
从而当
时,
………………………………………(7分)
③当
时,因为
,
从而
一定不成立……………………………………………………………(8分)
综上得,当且仅当
时,
,
故
………………………………………(9分)
从而当
时,
取得最大值为
………………………………………………(10分)
(Ⅲ)“当
时,
”等价于“
对
恒成立”,
即“
(*)对
恒成立” ……………………………(11分)
当
时,
,则当
时,
,则(*)可化为
,即
,而当
时,
,
所以
,从而
适合题意……………………………………………………………(12分)
当
时,
.
当
时,(*)可化为
,即
,而
,
所以
,此时要求
………………………………………………………(13分)
当
时,(*)可化为
,
所以
,此时只要求
……………………………………………………(14分)
(3)当
时,(*)可化为
,即
,而
,
所以
,此时要求
………………………………………………………(15分)
由⑴⑵⑶,得
符合题意要求.
综合①②知,满足题意的
存在,且
的取值范围是
……………………………(16分)
科目:高中数学 来源:2010-2011年江苏省淮安市楚州中学高二上学期期末考试数学试卷 题型:解答题
(本题满分16分)
已知函数
,且对任意
,有
.
(1)求
;
(2)已知
在区间(0,1)上为单调函数,求实
数
的取值范围.
(3)讨论函数
的零点个数?(提示
:
)
查看答案和解析>>
科目:高中数学 来源:2012-2013学年浙江省高三10月阶段性测试理科数学试卷(解析版) 题型:解答题
(本题满分16分)已知函数
为实常数).
(I)当
时,求函数
在
上的最小值;
(Ⅱ)若方程
在区间
上有解,求实数
的取值范围;
(Ⅲ)证明:![]()
(参考数据:
)
查看答案和解析>>
科目:高中数学 来源:2013届江苏省高二下期中理科数学试卷(解析版) 题型:解答题
(本题满分16分) 已知椭圆
:
的离心率为
,
分别为椭圆
的左、右焦点,若椭圆
的焦距为2.
⑴求椭圆
的方程;
⑵设
为椭圆上任意一点,以
为圆心,
为半径作圆
,当圆
与椭圆的右准线
有公共点时,求△
面积的最大值.
查看答案和解析>>
科目:高中数学 来源:2014届江苏省高一上学期期中考试数学试卷(解析版) 题型:解答题
(本题满分16分)已知函数
是定义在
上的偶函数,且当
时,
。
(Ⅰ)求
及
的值;
(Ⅱ)求函数
在
上的解析式;
(Ⅲ)若关于
的方程
有四个不同的实数解,求实数
的取值范围。
查看答案和解析>>
科目:高中数学 来源:江苏省2009-2010学年高二第二学期期末考试 题型:解答题
本题满分16分)已知圆内接四边形ABCD的边长分别为AB = 2,BC = 6,CD = DA = 4 ;求四边形ABCD的面积.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com