分析 (1)先根据f(x)是定义在R上的奇函数,得到f(0)=0,再设x<0时,则-x>0,结合题意得到f(x)=-f(-x)进行化简,进而得到函数的解析式.
(2)利用(1)的结论,即可解不等式.
解答 解:(1)∵f(x)是定义在R上的奇函数,
∴f(0)=0,
∵当x>0时,f(x)=x2-x-1,
∴当x<0时,
f(x)=-f(-x)=-(x2+x-1)=-x2-x+1,
综上所述,f(x)=$\left\{\begin{array}{l}{{x}^{2}-x-1,x>0}\\{0,x=0}\\{-{z}^{2}-x+1,x<0}\end{array}\right.$;
(2)由题意,$\left\{\begin{array}{l}{x>0}\\{{x}^{2}-x-1>1}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{-{x}^{2}-x+1>1}\end{array}\right.$,
解得x>2或-1<x<0,
∴不等式的解集为{x|x>2或-1<x<0}.
点评 本题考查了借助函数的奇偶性求解函数的解析式,考查学生解不等式的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|0<x<3} | B. | {x|x≤1} | C. | {x|x<3} | D. | {x|0<x≤1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 从编号为1~10号的小球中随意取一个小球的编号 | |
| B. | 从早晨7:00到中午12:00某人上班的时间 | |
| C. | A、B两地相距a km,以v km/h的速度从A到达B的时间 | |
| D. | 某十字路口一天中经过的轿车辆数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 最大值2,最小值-2 | B. | 最大值3,最小值-3 | ||
| C. | 最大值1,最小值-3 | D. | 最大值4,最小值0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{4}{5}$ | B. | $\frac{4}{5}$ | C. | $-\frac{4}{5}i$ | D. | $\frac{4}{5}i$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{3}$或$\frac{2π}{3}$ | D. | $\frac{π}{3}$或$\frac{5π}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com