精英家教网 > 高中数学 > 题目详情
直线l与圆x2+y2+2x-4y+1=0相交于A,B两点,若弦AB的中点(-2,3),则直线l的方程为(  )
A、x+y-3=0
B、x+y-1=0
C、x-y+5=0
D、x-y-5=0
考点:直线和圆的方程的应用
专题:计算题,直线与圆
分析:圆x2+y2+2x-4y+1=0化为标准方程,可得圆心坐标,先求出垂直于直线l的直线的斜率,再求出直线l的斜率,利用点斜式可得直线方程.
解答: 解:圆x2+y2+2x-4y+1=0化为标准方程为(x+1)2+(y-2)2=4,圆心坐标为C(-1,2).
∵弦AB的中点D(-2,3),
∴kCD=
3-2
-2+1
=-1,
∴直线l的斜率为1,
∴直线l的方程为y-3=x+2,即x-y+5=0.
故选C.
点评:本题考查直线方程,考查直线与圆的位置关系,正确求出直线的斜率是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算下列各式的值
(1)(lg2)2+lg5•lg20+(π-3)0
(2)sin(-300°)•cos1470°+cos(-
5
3
π)•sin
13π
6
+2tan(-
7
4
π)•cos
π
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=x2+2bx-1(b∈R).
(1)若函数y=f(x)与x轴的两个交A(x1,0),B(x2,0)点之间的距离为2,求b的值;
(2)若关于x的方程f(x)+x+b=0的两个实数根分别在区间(-3,-2),(0,1)内,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

一条线段的长等于10,两端点A、B分别在x轴和y轴上滑动,M在线段AB上且
AM
=4
MB
,则点M的轨迹方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

x+
m
x
≥4
在x∈[3,4]内恒成立,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数y=f(x)在[0,7]上只有l和3两个零点,且y=f(2-x)与y=f (7+x)都是偶函数,则函数y=f(x)在[0,2013]上的零点个数为(  )
A、402B、403
C、404D、405

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂有25周岁以上(含2S周岁)工人300名,25周岁以下工人200名为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100),分别加以统计,得到如图所示的频率分布直方图.
(1)求样本中“25周岁以上(含25周岁)组”抽取的人数、日生产量平均数:
(2)若“25周岁以上组”中日平均生产90件及90件以上的称为“生产能手”;“25周岁以下组”中日平均生产不足60件的称为“菜鸟”.从样本中的“生产能手”和”菜鸟”中任意抽取2人,求这2人日平均生产件数之和X的分布列及期望.(“生产能手”日平均生产件数视为95件,“菜鸟”日平均生产件数视为55件).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2=1,点P(x0,y0)是直线l:3x+2y-4=0上的动点,若在圆C上总存在不同的两点A,B使得
OA
+
OB
=
OP
,则x0的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知|
OA
|=|
OB
|=1,
OA
OB
=0,点C满足
OC
OA
OB
(λ,μ∈R),且∠AOC=30°,则
λ
μ
等于
 

查看答案和解析>>

同步练习册答案