【题目】某高校在2012年的自主招生考试成绩中随机抽取名中学生的笔试成绩,按成绩分组,得到的频率分布表如表所示.
组号 | 分组 | 频数 | 频率 |
第1组 | 5 | ||
第2组 | ① | ||
第3组 | 30 | ② | |
第4组 | 20 | ||
第5组 | 10 |
(1)请先求出频率分布表中位置的相应数据,再完成频率分布直方图;
(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第组中用分层抽样抽取名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;
(3)在(2)的前提下,学校决定在名学生中随机抽取名学生接受考官进行面试,求:第组至少有一名学生被考官面试的概率.
【答案】(1)人,,直方图见解析;(2)人、人、人;(3).
【解析】
(1)由频率分布直方图能求出第组的频数,第组的频率,从而完成频率分布直方图.
(2)根据第组的频数计算频率,利用各层的比例,能求出第组分别抽取进入第二轮面试的人数.
(3)设第组的位同学为,第组的位同学为,第组的位同学为,利用列举法能出所有基本事件及满足条件的基本事件的个数,利用古典概型求得概率.
(1)①由题可知,第2组的频数为人,
②第组的频率为,
频率分布直方图如图所示,
(2)因为第组共有名学生,
所以利用分层抽样在名学生中抽取名学生进入第二轮面试,每组抽取的人数分别为:
第组: 人,
第组:人,
第组:人,
所以第组分别抽取人、人、人进入第二轮面试.
(3)设第组的位同学为,第组的位同学为,第组的位同学为,
则从这六位同学中抽取两位同学有种选法,分别为:,,,,,,,,,,,,,,,
其中第组的位同学中至少有一位同学入选的有种,分别为:,,,
∴第组至少有一名学生被考官面试的概率为.
科目:高中数学 来源: 题型:
【题目】圆x2+y2=4的切线与x轴正半轴,y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图),双曲线C1: 过点P且离心率为 .
(1)求C1的方程;
(2)若椭圆C2过点P且与C1有相同的焦点,直线l过C2的右焦点且与C2交于A,B两点,若以线段AB为直径的圆过点P,求l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个结论:
①命题“若a=0,则ab=0”的否命题是“若a=0,则ab≠0”;
②已知命题p:x∈R,x2+6x+11<0,则p:x∈R,x2+6x+11≥0;
③若命题“p”与命题“p或q”都是真命题,则命题q一定是真命题;
④命题“若0<a<1,则loga(a+1)<log
其中正确结论的序号是_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国南宋时期的著名数学家秦九韶在他的著作《数学九章》中提出了秦九韶算法来计算多项式的值,在执行如图算法的程序框图时,若输入的n=5,x=2,则输出V的值为( )
A.15
B.31
C.63
D.127
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC-A1B1C1中,∠ACB=90°,2AC=AA1=BC=2.若二面角B1-DC-C1的大小为60°,则AD的长为( )
A. B. C. 2 D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某教师调查了名高三学生购买的数学课外辅导书的数量,将统计数据制成如下表格:
男生 | 女生 | 总计 | |
购买数学课外辅导书超过本 | |||
购买数学课外辅导书不超过本 | |||
总计 |
(Ⅰ)根据表格中的数据,是否有的把握认为购买数学课外辅导书的数量与性别相关;
(Ⅱ)从购买数学课外辅导书不超过本的学生中,按照性别分层抽样抽取人,再从这人中随机抽取人询问购买原因,求恰有名男生被抽到的概率.
附: , .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=logax(a>0且a≠1)的图象过点(4,2),
(1)求a的值.
(2)若g(x)=f(1-x)+f(1+x),求g(x)的解析式及定义域.
(3)在(2)的条件下,求g(x)的单调减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合A={x|x2-3x+2=0},B={x|x2+(a-1)x+a2-5=0}.
(1)若A∩B={2},求实数a的值;
(2)若A∪B=A,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体中,ABC﹣A1B1C1为三棱柱,且AA1⊥平面ABC,四边形ABCD为平行四边形,AD=2CD,∠ADC=60°.
(1)若AA1=AC,求证:AC1⊥平面A1B1CD;
(2)若CD=2,AA1=λAC,二面角A﹣C1D﹣C的余弦值为 ,求三棱锥C1﹣A1CD的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com